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Abstract. Explaining cooperative experimental evidence in the Centipede

game constitutes a challenge for rational game theory. Traditional analyses of
Centipede based on backward induction predict uncooperative behavior. Fur-

thermore, analyses based on learning or adaptation under the assumption that

those strategies that are more successful in a population tend to spread at a
higher rate usually make the same prediction. In this paper we consider an

adaptation model in which agents in a finite population do adopt those strate-

gies that turn out to be most successful, according to their own experience.
However, this behavior leads to an equilibrium with high levels of cooperation

and whose qualitative features are consistent with experimental evidence.

1. Introduction. The Centipede game [30] is a paradigm for modeling sequential
interactions in which the temptation to secure short-term benefits can hinder the
realization of much larger long-term gains. In the Centipede game, two players
sequentially choose whether to stop or continue their interaction. Choosing to con-
tinue the interaction yields an immediate cost to the chooser, but a greater benefit
to his opponent. Thus each decision to continue increases the joint total payoffs the
players obtain. Play proceeds until one player decides to stop the interaction, or
until a choice to continue is made in the final period. This final period is prespec-
ified as part of the definition of the game. A Centipede game with four decision
nodes is presented in fig. 1.

Centipede games can be understood as a stylized model of sequential contribu-
tions to the social good for settings with a commonly known terminal date. Appli-
cations can be found in a variety of domains of human decision making including se-
quential disarmament by two countries, sequential effort choice by two contributors
to a project, and negotiations with sequential concessions by politicians nearing the
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Figure 1. A centipede game with four decision nodes, each la-
beled with the deciding player. Payoffs for player 1 (P1) appear
above those for player 2 (P2).

end of their terms. Examples can even be found in biology, among hermaphroditic
sea bass, which take turns in laying small batches of eggs and fertilizing their mate’s
eggs [2].

Centipede games exhibit a tension between social optimality and individual in-
centives. Each additional round of play increases the players’ joint total payoffs, but
in the final period of the game choosing to continue can only hurt the player who
chooses. In earlier periods, a player benefits from continuing if and only if he expects
his opponent to continue in the next period. The logic of backward induction—
formalized in the notion of subgame perfect equilibrium [35, 36]—predicts that the
first player will stop the game at the very first decision node. The reason is the
following: the player who chooses in the final node will surely stop (because con-
tinuing will only hurt him). Knowing this, the owner of the previous decision node
will also stop, since he anticipates that the other player will stop the game in the
following period. This backward induction logic unravels all the way back to the
initial node. Thus backward induction predicts completely uncooperative behavior,
with players obtaining the lowest possible joint total payoff.

The prediction that players stop immediately can be criticized from multiple
points of view. Experimental evidence in Centipede shows that cooperative behav-
ior, i.e., choosing to continue, often persists, with very few matches ending at the
initial decision node, most reaching the last decision nodes, and a non-negligible
fraction proceeding to the very last node [19, 21]. Experience generally, but not
always, tends to make players stop at earlier stages [23, 7, 28, 9].

The backward induction prediction can also be criticized on theoretical grounds.
Backward induction is founded on the assumption that each player always expects
his opponent to behave rationally in the future, regardless of how he behaved in the
past, and this assumption can be criticized not only from a descriptive point of view,
but also from a normative perspective [3, 26, 40, 1, 29, 11, 24]. A decision not to
stop at the initial node in Centipede could be taken as a signal of the intention not
to stop at future nodes. Furthermore, choosing to stop at any decision node ensures
that a player gets the second-worst payoff of those he can still obtain; the strong
assumptions underlying backward induction are thus particularly pessimistic.

Traditional approaches to explain cooperative play in Centipede have relied on
introducing the possibility that one’s opponent may be altruistic [18, 19]. This com-
plicates the model considerably, as traditional solution concepts require even the
nature of this uncertainty about opponents’ preferences to be common knowledge
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among the players. Most models based on population dynamics, including the repli-
cator dynamics and the best response dynamics, also lead to the stop-immediately
prediction in Centipede [8, 42]. However, adding noise to agents’ decisions has been
shown to lead to cyclical behavior under the replicator dynamic [27], and provides
a possible explanation for cooperative behavior in noisy best response models [20].

Like traditional models in game theory, most population dynamic models assume
that players have access to precise information about opponents’ behavior—here,
information about the population shares of each strategy, or about the expected
payoffs that each strategy currently earns over all possible random matches. Such
assumptions demand a lot from the players, particularly in games like Centipede,
where a play of the game need not reveal the opponent’s intended strategy (this is
always the case if a play of the game does not reach the decision node at which the
opponent intended to stop).

In this paper we take a different approach to defining population dynamics for
games. Instead of assuming that players have precise information about aggregate
behavior, we assume instead that they base their decisions entirely on their experi-
ences playing the game, choosing the strategy that performed best during the most
recent test of alternatives. Here we study the simplest form of this best-experienced-
payoff process [33]: In each period, some agents are selected at random and given
the opportunity to switch strategies. Upon such opportunities, each revising agent
randomly selects a single alternate strategy. He tests his current strategy and the
alternate strategy κ times each by playing them against randomly matched oppo-
nents. He then switches to the alternate strategy if the total payoff of the alternate
strategy in the test is higher than the total payoff of his original strategy.

Using simulations and a deterministic mean dynamic approximation, we show in
this paper that when individual agents follow this “test two, choose the better” rule
in the Centipede, the distribution of choices in the population becomes concentrated
on the last few nodes of the game. This prediction differs both from the traditional
one based on subgame perfection, and also from those in the canonical framework
of evolutionary game dynamics, but largely accords with experimental evidence and
with the widespread intuitive impression that cooperative play in Centipede can be
sustained.

Among the closest antecedents in the literature, Osborne and Rubinstein [22]
define a static equilibrium concept for “procedurally rational players” who choose
optimally given the information they possess. Specifically, they consider equilibrium
behavior among players who include all of their strategies as candidates, test each κ
times, and then choose the one whose total payoff is highest, breaking ties randomly.
They show that if such players play the Centipede game, the equilibrium probability
that player 1 stops immediately vanishes as the number of decision nodes grows to
infinity. Sethi [37] introduces large population deterministic dynamics derived from
the decision rule in [22]. Sandholm et al. [33] (see also [34]) prove that when players
test all their strategies once before updating their strategy, deterministic dynamics
in the Centipede game present an equilibrium in which almost every player continues
up to their last three decision nodes.

We deviate from [33] in two main aspects. First, the assumption that a player
will test all his available strategies before adopting a new one can be too stringent
in some settings, especially if there is a large number of available strategies. A
natural variation is to consider that a new strategy can be adopted after testing a
limited number of alternative strategies; in the simplest setting, this leads to the
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test-two rule on which we focus. Second, real populations are necessarily finite,
and deterministic dynamics results (which assume that the population is infinite)
are not guaranteed to be good approximations for realistic population sizes. In
this paper, besides considering deterministic dynamics, we focus on relatively small
populations (mainly population sizes 10 and 100), so we can assess the practical
relevance of the deterministic approximation.1

We start our analysis deriving the deterministic approximation (or mean-dynamic
equations [32]) for the test-two rule with one trial (κ = 1), and presenting various
results that characterize it. The backward-induction state, at which all players
use their stop-immediately strategy, is always a rest point of the mean dynamics,
but we prove that it is a repellor, i.e. solution trajectories starting close to the
backward-induction state move away from it. We also find an interior rest point
that we can compute exactly for centipedes of length d ≤ 8, and through numerical
analysis in longer games. At this interior rest point, most of the matches reach
one of the last decision nodes. Specifically, for any length of the game, more than
94% of the matches reach one of the last five decision nodes, and if the number of
decision nodes is greater than five the strategy distribution over the last nodes is
basically the same. Furthermore, a numerical exploration of the mean dynamics
suggests that the interior rest point attracts all trajectories except the stationary
one at the backward induction state. We also derive the mean-dynamic equations
for any number of trials κ and explore their behavior numerically for Centipedes
with four nodes. In this case, we find that substantial levels of cooperation persist
even for large numbers of trials (e.g. κ = 100) and the dynamics are cyclical, rather
than contractive.

In finite populations, we study a short centipede (d = 4), which admits support-
ing graphical representations, and a longer centipede (d = 10) as an illustrative case
of the results obtained for d ≥ 8. Given that for large populations one can expect
the deterministic approximation results to become more relevant, we focus here on
relatively small groups, considering population sizes N between 10 and 100 agents.

For the one-trial case we find –in accordance with the deterministic approximation–
an interior attractor2 such that most matches end at one of the last nodes of the
game. In finite populations where agents test each strategy a larger number of
trials, we find –in accordance with the deterministic approximation– cyclical be-
havior. This cyclical behavior persists even if agents test their strategies against
nearly all individuals in the other population. This is striking since when κ is large,
the distribution of opponents’ choices that revising agents face is similar to the
actual current distribution in the population; this suggests that simulations should
move towards Nash equilibria (all of which imply no cooperation at all). In fact,
when agents test their strategies against all the agents in the opposing population
(i.e. κ = N), a no-cooperation state is quickly reached, since in that case the test-
two rule is effectively a pairwise version of the best-response protocol [10, 12, 43].
However, it is striking that the small variability introduced by making agents play
against the whole population except for just one agent (i.e. κ = N − 1) can change

1Smead [39] also studies finite populations of agents who play the Centipede game, but they

evolve according to a frequency-dependent Moran process. He focuses on the asymptotic behavior
of the model and finds substantial levels of cooperation for some mutation rates.

2We use the term attractor in this context for states around which the process spends long
consecutive periods of time.
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the dynamics completely, leading to the cooperative cycles predicted by the mean
dynamics.

To prove our results about the deterministic approximation, we use techniques
from dynamical systems theory and we also employ algorithms from computational
algebra and perturbation bounds from linear algebra. We complement this approach
with numerical analyses of cases in which exact results cannot be obtained. All the
analytical proofs are included in appendix A.1 and all the computational proofs are
discussed in appendix A.2. The procedures followed to obtain the numerical results
on the deterministic approximations are explained in appendix A.3.

The Mathematica notebook used to conduct the computational proofs and to
obtain the numerical approximations is freely available at https://github.com/luis-
r-izquierdo/bep-centipede. Details about all the functions implemented in the note-
book are provided in the notebook itself.3

The results about the original dynamics on finite populations have been obtained
running agent-based simulations, following the procedure detailed in appendix A.4.
The agent-based model, which has been implemented in the open-source platform
NetLogo [41], is freely available at https://luis-r-izquierdo.github.io/centipede-test-
two.4

2. The test-two dynamics.

2.1. Definition. In this section we formally describe the stochastic process under
study, henceforth the test-two dynamics. The two-player normal form game G =
{(S1, S2), (A,B)} is defined by pairs of strategy sets Sp = {1, . . . , sp}, p ∈ {1, 2} and

payoff matrices A,B ∈ Rs1×s2 . Aij and Bij represent the two players’ payoffs when
strategy profile (i, j) ∈ S1 × S2 is played. Our analysis of Centipede focuses on the
reduced normal form, whose strategies specify an agent’s “plan of action” for the
game, but not his choices at decision nodes that are ruled out by his own previous
choices. If the number of decision nodes d in Centipede is even, each individual has
an associated strategy i ∈ {1, ..., d2 + 1}, where strategy i ≤ d

2 corresponds to “stop

at your i-th decision node, and not before”, and strategy i = d
2 + 1 corresponds to

“do not stop”. The adaptation to an odd number of decision nodes is immediate,
with s1 = d+3

2 and s2 = s1−1. It will sometimes be convenient to number strategies
starting from the end of the game. To do so, we write [k] ≡ sp−k for k ∈ {0, . . . , sp},
so that [0] denotes continuing at all nodes, and [k] with k ≥ 1 denotes stopping at
player p’s kth-to-last node.

The payoff matrices (A,B) of Centipede’s reduced normal form can be expressed
concisely as

(Aij , Bij) =

{
(2i− 2, 2i− 2) if i ≤ j,
(2j − 3, 2j + 1) if j < i.

We consider two populations of N individuals each who play a Centipede game
with d decision nodes. Individuals from one population take the role of player 1,
and individuals from the other population take the role of player 2.

At every time period, an individual may revise his strategy with some probability
γ ∈ (0, 1); this probability is the same for every individual and independent between

3See also [33, section II, supplementary appendix] for an overview of the implemented functions.
4Other “best experienced payoff” dynamics –with different ways of choosing candidate strate-

gies and breaking ties– in other games can be simulated with ABED [15], a more general software
designed to simulate a wide range of evolutionary dynamics in finite populations.

https://github.com/luis-r-izquierdo/bep-centipede
https://github.com/luis-r-izquierdo/bep-centipede
https://luis-r-izquierdo.github.io/centipede-test-two
https://luis-r-izquierdo.github.io/centipede-test-two
https://luis-r-izquierdo.github.io/abed/
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individuals. Revising individuals choose a (uniformly) random alternate strategy,
different from their current one, and play 2κ Centipede games: κ games (trials) using
their current strategy and κ trials using the alternate one. Each of those κ trials
is played with a newly picked random partner from the other population, without
replacement while testing the same strategy. After all the revising players have
tested their alternate strategies, they simultaneously decide whether they adopt
their alternate strategy: if the total payoff obtained by the alternate strategy is
greater than the total payoff obtained by their current strategy, they adopt their
alternate strategy. Otherwise, they keep their current one.5

2.2. Asymptotic or ultralong-run behavior. Defining a state by the number
of agents that are choosing each strategy in each population, it is not difficult to
see that the test-two dynamics are Markov chains. In any game, for the test-two
dynamics, states that correspond to pure Nash equilibria are absorbing states of the
dynamic, but there could be more. In particular, in the Centipede game, for some
parameterizations, there are more absorbing states besides the backwards induction
state (which corresponds to the only pure Nash equilibrium).6 Nonetheless, all the
absorbing states share an important feature: every agent in population 1 is choosing
the stop-immediately strategy, so at every absorbing state all games end at the first
node. This result is gathered in proposition 1 and the proof is presented in appendix
A.1.

Proposition 1. In Centipede games of all lengths (d ≥ 2), the test-two dynamics
with any population size N , any number of trials κ, and any probability of revision
γ ∈ (0, 1), eventually reach an absorbing state where all games end at the first node,
regardless of initial conditions.

Following the terminology of [4, 5], the stop-immediately situation where every
game ends at the first period is the unique ultralong-run attractor of the process.
Eventually, every realization of the process will end up there. However, for any given
finite time window of analysis, this ultralong-run prediction can be, in practical
terms, unattainable, since it may take an astronomically long time to reach any of
the absorbing states.7

The attractive regimes that we focus on in this paper are what [4, 5] call the
long-run attractors of the process (in contrast with the ultralong-run attractors).
These attractive regimes are states or sets of states where long but finite realizations
of the process are expected to spend a large fraction of time. To characterize these
regimes, the deterministic approximation that we develop in the next section is
particularly useful, especially when populations are large.

5The mean dynamics of this stochastic process in 1-population 3-strategy games can be easily

analyzed using EvoDyn-3s [14]. This software generates phase portraits of evolutionary dynamics,

as well as data for the analysis of their equilibria, using exact arithmetic.
6For instance, for 2 < κ ≤ N , the state where every agent chooses strategy 1 except for one

agent in population 2 who uses strategy 2, i.e. (N, 0, . . . , 0|N − 1, 1, 0, . . . , 0), is also absorbing.

At that state, a player 1 testing a strategy other than 1 would obtain a payoff of at most 2 + (κ−
1)(−1) = 3− κ ≤ 0.

7In our computational experiments, reaching a stop-immediately absorbing state from random

initial conditions was never observed for long centipedes (d ≥ 10) with any number of trials κ < N
(not even for κ = N − 1), or for short centipedes with low number of trials κ. Only for the short
centipede case (d = 4) and a number of trials that constitutes a large fraction of the population,

it is not unlikely for the system to get to an absorbing stop-immediately state quickly.

https://luis-r-izquierdo.github.io/EvoDyn-3s/
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3. Deterministic approximation. In this section we present the deterministic
approximation or mean-dynamic equations [32] for the test-two dynamics and derive
several results for this approximation.

3.1. Notation. A population state for population 1 is an element of X = {x ∈
Rs1+ :

∑
i∈S1 xi = 1}, where xi is the fraction of population 1 players choosing

strategy i. Likewise Y = {y ∈ Rs2+ :
∑
i∈S2 yi = 1} is the set of population states

for population 2. Thus x and y are formally equivalent to mixed strategies for
players 1 and 2, and elements of the set Ξ = X × Y are formally equivalent to
mixed strategy profiles. In a slight abuse of terminology, we also refer to elements
ξ of Ξ as population states.

3.2. Mean dynamics of the test-two dynamics with one trial (κ = 1).

3.2.1. Equations. The mean dynamic of the test-two dynamics for Centipede with
κ = 1 can be written as

ẋi =
1

s1 − 1

∑
h 6=i

 s2∑
k=h+1|i

s2 |i∑
`=1

yky` +

h|i−1∑
k=2

k−1∑
`=1

yky`

 (xi + xh) +

h−1|i−1∑
k=1

(yk)2xi

− xi,

(1a)

ẏj =
1

s2 − 1

∑
h 6=j

 s1∑
k=h+2|j+1

s1 |j+1∑
`=1

xkx` +

h+1|j∑
k=2

k−1∑
`=1

xkx`

 (yj + yh) +

h|j∑
k=1

(xk)2yj

− yj .

(1b)

In the summations in (1a), the notation L− |L+ should be read as “if h < i use
L− as the limit; if h > i use L+ as the limit”; likewise for those in (1b), but with
h now compared to j.8 Each term in the brackets in (1a) represents a comparison
between the performances of strategies i and h. Terms that include xi+xh represent
cases in which the realized payoff to i is larger than that to h, so that it does not
matter whether the revising agent is an i player who tests h or vice versa. The
terms with xi alone represent cases of payoff ties, which arise when i and h are
both played against opponents choosing the same strategy k < min(i, h) that stops
before either i or h; in this case, the agent will play i only if he was already doing
so.

To understand the functional form of (1a), consider a revising agent with test
set {i, h}. If i > h, the initial double sum represents matchings in which i is played
against an opponent choosing a strategy above h; if i < h, it represents matchings in
which i is played against an opponent choosing strategy i or higher, while h is played
against an opponent choosing strategy i or lower. The second double sum represents
matchings in which i is played against an opponent choosing strategy min(h, i− 1)
or lower, while h is played against an opponent choosing a still lower strategy. In
all of these cases, i yields a larger payoff than h, so the revising agent selects i
regardless of what he was initially playing. The final sum represents matchings in
which i and h are both played against opponents who choose the same strategy
k < min(h, i), leading the agent to stick with his original strategy i.

The following subsections present various results about the mean dynamic. Some
results have been obtained analytically, others using (exact) symbolic computation,
and some numerically.

8We could replace | by the min operator in all cases other than the two that include s2 or s1.
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3.2.2. Analytical results. It is easy to check that the backward induction state ξ†

(which corresponds to x1 = y1 = 1) is a rest point of the mean dynamic (1). The
following proposition states that this rest point is always repelling.

Proposition 2. In Centipede games of all lengths (d ≥ 2), the backward induction
state ξ† is repelling under dynamic (1).

Since the backward induction state is unstable, we next try to determine where
the dynamics may converge. As a start, we prove that except at the rest point ξ†,
motion from states on the boundary of the state space proceeds immediately into
the interior of the state space.

Proposition 3. In Centipede games of all lengths (d ≥ 2), solutions to dynamic
(1) from every initial condition ξ ∈ bd(Ξ) \ {ξ†} immediately enter int(Ξ).

Together, propositions 2 and 3 imply that dynamic (1) has at least one interior
rest point for any length d ≥ 2. To gain a more precise understanding of the form
and stability of such rest point(s), we turn to exact computations.

3.2.3. Results based on exact computations. Because the dynamic (1) is a system of
polynomials with rational coefficients, its zeros can be found –at least in principle–
by computing a Gröbner basis for the system (see [33] for details). In our case, it
is computationally feasible to calculate all the rest points for d ≤ 8.9 Proposition 4
below states that there is just one other rest point besides the backward induction
state, and it is asymptotically stable.

Proposition 4. In Centipede games of lengths 2 ≤ d ≤ 8,

i Dynamic (1) has exactly two rest points: ξ†, and ξ∗ = ξ∗(d) ∈ int(Ξ).
ii The rest point ξ∗ is asymptotically stable.

The unique interior stable rest point is represented in fig. 2 (which also includes
values for lengths d greater than 8 that have been calculated numerically). Note
that the stable rest point is mostly cooperative, with play always concentrated at
the last nodes of the game. Even the weakly dominated strategy for the last movers
[0], i.e. the most cooperative strategy which plays “always continue”, is played by
approximately 25% of the population at the stable rest point, in any Centipede of
any length d. The fact that testing of different strategies may occur against different
opponents means that relations like dominance, which is intimately connected to
backward induction, are not so compelling under the testing procedure considered
here.10

9For lengths 2 ≤ d ≤ 3, the system of polynomials can be solved analytically and has solutions

that can be expressed in radicals. For lengths 4 ≤ d ≤ 8, the solutions are algebraic numbers that
cannot be expressed in radicals. For larger values of d, the computational burden of solving large
systems of polynomial equations and working with algebraic numbers makes solving the system

unfeasible in practical terms. As an example, when d = 8, the leading (univariate) polynomial
from the Gröbner basis is of degree 128, and a coefficient of one of the polynomials in the basis

has 775 digits.
10To understand why the weakly dominated strategy is present at the stable rest point, suppose

that a population 2 agent tests strategies 2 and 3. It may happen that when she tests strategy

3, the opponent against whom she is matched plays strategy 3 (so the revising player obtains
a payoff of 4 when testing strategy 3), and that when she tests strategy 2, the (new) opponent
against whom she is matched plays strategy 1 or 2 (so the revising player obtains 0 or 2). Then

the revising agent’s best experienced payoff comes from her test of the weakly dominated strategy
3.
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Figure 2. The stable rest point of Centipede under dynamic (1)
for game lengths d = 2, . . . , 10 and d = 20. Stacked bars, from
the bottom to the top, represent weights on strategy [0] (continue
at all decision nodes), [1] (stop at the last node), [2] (stop at the
second-to-last node), etc. The dashed line separates exact (d ≤ 8)
and numerical (d ≥ 9) results.

Propositions 2 to 4 together suggest that the unique interior rest point may at-
tract all trajectories except the stationary one at the backward induction state.
Using an algorithm from real algebraic geometry called cylindrical algebraic de-
composition [6], we can prove this statement for Centipedes of lengths d ≤ 3;11

moreover, in the following subsection we provide numerical evidence that suggests
that this statement is valid for Centipedes of any length.

Proposition 5. In Centipede games of lengths 2 ≤ d ≤ 3, solutions to dynamic (1)
from every initial condition ξ ∈ Ξ\{ξ†} converge to the unique interior state ξ∗(d).

3.2.4. Numerical results. Because exact methods only allow us to determine the
rest points of dynamic (1) in Centipede games of lengths d ≤ 8, we use numerical
methods to study games of lengths 8 through 20. Our numerical analysis –detailed
in Appendix A.3– suggests that for game lengths 8 ≤ d ≤ 20 there are exactly two
rest points, the backward induction state ξ†, and an interior rest point ξ∗ = ξ∗(d).
As fig. 2 illustrates, the form of the interior rest point follows the same pattern
for any length d ≥ 7, with nearly all of the mass placed on each population’s
four most cooperative strategies, and the weights on these strategies are essentially
independent of the length of the game. Thus, for any length of the Centipede, play
is always concentrated at the last nodes of the game, with more than 94% of the
matches reaching one of the last 5 decision nodes.

In Appendix A.2 we provide precise numerical estimates of the interior rest points
ξ∗(d) (table 2) and of the eigenvalues of the Jacobian of the dynamic at ξ∗(d) (ta-
ble 3). In Appendix A.3 we provide numerical evidence that suggests that propo-
sition 5 (which proves that the interior point is an almost globally asymptotically
stable state for lengths 2 ≤ d ≤ 3) extends to much longer Centipede games.

To summarize, the numerical results suggest that the conclusions about rest
points established exactly for games of lengths d ≤ 8 continue to hold for longer
games: there are always exactly two rest points, the backward induction state ξ†,

11Exact implementations of this algorithm fail to terminate in longer games.
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and a stable interior rest point ξ∗ whose form barely varies with the length of the
game. The result that the interior rest point is almost globally asymptotically stable
also seems to extend for longer games.

3.3. Mean Dynamics of the test-two dynamics with several trials.

3.3.1. Equations. The approach followed to derive (1) is based on considering each
of the strategies played by an agent’s opponent when an agent tests a strategy i in
his test set. For large κ we can obtain a formula with far fewer terms than looking
at all the possible permutations by instead considering the possible total payoffs
that an agent may obtain when testing a strategy, with their associated probability
(i.e. working with the distribution of opponents’ strategies when the agent tests
strategy i). Using such formulas is essential for numerical computations when κ is
not small.

To do this we introduce a number of definitions. For p, q ∈ {1, 2}, p 6= q, let

Zs
q,κ

+ =

z ∈ Zs
q

+ :
∑
j∈Sq

zj = κ


denote the set of possible (unnormalized) empirical distributions of opponents’
strategies when a population p agent tests one of his own strategies κ times. When
the state of population q is ξq ∈ Ξq, the probability that empirical distribution z
occurs is the multinomial probability

Mp,κ(z, ξq) =

(
κ

z1 · · · zsq

)
(ξq1)z1 · · · (ξqsq )

zsq .

And if a population p agent faces empirical distribution z when testing strategy
i ∈ Sp, his total payoff is

πpi (z) =
∑
j∈Sq

Upij zj

where Upij is the corresponding payoff matrix, i.e., U1
ij = Aij and U2

ij = Bji.

Therefore, if we let Πp,κ
i (ξq) be a random variable representing the total pay-

off obtained if strategy i ∈ Sp is tested κ times when the state of the opposing
population is ξq, then the distribution of Πp,κ

i (ξq) is

Pr (Πp,κ
i (ξq) = w p

i ) =
∑

z∈Zs
q,κ

+ : πpi (z)=w
p
i

Mp,κ(z, ξq).

We can then obtain the following equations for the considered test-two dynamic
with κ trials:

ẋi =
1

s1 − 1

∑
w1
i∈W

1,κ
i

Pr
(
Π1,κ
i (y) = w1

i

) s1∑
h=1,h6=i

(
xi Pr

(
Π1,κ
h (y) ≤ w1

i

)
+ xh Pr

(
Π1,κ
h (y) < w1

i

))
− xi (2a)

ẏj =
1

s2 − 1

∑
w2
j∈W

2,κ
j

Pr
(
Π2,κ
j (x) = w2

j

) s2∑
h=1,h6=j

(
yj Pr

(
Π2,κ
h (x) ≤ w2

j

)
+ yh Pr

(
Π2,κ
h (x) < w2

j

))
− yj (2b)

To interpret this formula, note that each term of the form
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(i) κ = 50

(ii) κ = 100

Figure 3. Stable cycles in Centipede of length d = 4 under dy-
namics (2) for κ = 50 and 100. Lighter shading represents faster
motion. Shapes synchronize positions along the cycle.

xi
1

s1 − 1
Pr
(

Π1,κ
i (y) = w1

i

)
Pr
(

Π1,κ
h (y) ≤ w1

i

)
is the probability that a revising player 1 agent uses strategy i, selects strategy
h 6= i to test, obtains payoff w1

i when testing strategy i, and obtains some lower or
equal payoff when testing strategy h, so the revising player keeps using strategy i.

3.3.2. Numerical exploration. Like in the one-trial case, the backward induction
state ξ† is also a rest point of the mean dynamic (2) for any κ. Nonetheless, a
numerical exploration of the dynamic reveals that almost all solution trajectories
converge to an interior rest point if the number of trials is low, and to a stable cycle
if the number of trials is higher. As an example, in a Centipede of length d = 4,
we can observe that when κ ≥ 40, the interior rest point is not a global attractor
anymore but the center of a stable cycle. The amplitude of this stable cycle seems
to increase with the number of trials (fig. 3).

To assess the impact of the number of trials κ on the level of cooperation, we
can compute the expected duration of play (i.e. the number of the terminal node
at which a match ends) in the matches. Note that the duration of play ranges from
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Figure 4. Expected duration of play at the stable rest point (for
κ ≤ 30) and integrated over the stable cycle (for κ ≥ 40) in Cen-
tipede of length d = 4, for various numbers of trials κ.

1, if the match stops at the first decision node, to d + 1, if the match reaches the
last terminal node. Figure 4 shows that going from one trial to two increases the
expected duration of play (see appendix A.6 for an explanation of this effect), but
from two trials onwards, the expected duration of play decreases as the number
of trial increases. This makes intuitive sense –since the test-two rule approaches a
pairwise version of best-response as κ increases–, but it is striking to see how slowly
the level of cooperation drops as the number of trials increases.

4. The test-two dynamics on finite populations. In this section we simulate
and analyze the test-two dynamics on finite populations. We study the evolution of
behavior in a short four-node Centipede and in a 10-node Centipede; the analysis
of longer games is essentially the same as the case of length d = 10. In each game,
we consider various choices of the number of agents in each population N and of
the number of trials κ. We always use γ = .1 as probability of revision.12

4.1. A short Centipede. We first analyze the evolution of behavior in the four-
node Centipede game pictured in fig. 1. In this case, we can represent aggregate
behavior in each population by representing the population states x and y as points
in the two-dimensional simplex –or, more precisely, as cells in discretized versions
of the simplex.

4.1.1. Four-node Centipede, one trial. Figure 5 shows a plot describing the em-
pirical distribution over population states in each population when strategies are
tested once (κ = 1), in a population of size N = 10, over a long simulation time
(see details in Appendix A.4). Only a minority of agents in each population stop

12This value was chosen because it allows for a rather quick evolution of the process towards
its attractor, and at the same time it shows that the attractor is robust to simultaneous strategy
revisions by more than one player in the same time period. (Simultaneous revisions are likely if

the population size is large.) Our results present a small sensitivity to reductions or moderate
increases in this parameter.
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x1

x2 x3

(i) first movers population

y1

y2 y3

(ii) second movers population

Figure 5. Plot of the empirical distribution on population states,
in each population, in a four-node Centipede with N = 10 and
κ = 1.

at their initial node, and the empirical distributions exhibit considerable disper-
sion, as one would expect from dynamics in small populations. The means of the
empirical distributions in the two populations are x̄ = (0.229, 0.407, 0.364) and
ȳ = (0.361, 0.364, 0.275).

(i) first movers population (ii) second movers population

Figure 6. Smoothed 3D histogram of the empirical distribution
on population states, in each population, for N = 100 and κ = 1.

Figure 6 presents the corresponding results for a population size of N = 100.
Once again, only a minority of agents stop immediately, with the mean over states
now equal to x̄ = (0.210, 0.410, 0.379) and ȳ = (0.346, 0.364, 0.290), which agrees
well with the prediction of the mean dynamic equations (see fig. 2 and table 2). The
dispersion of the population about its mean is much smaller, and the distributions
over population states appear to be approximately multivariate normal (cf. [31, 15]).

These results and those to follow show that the logic of backward induction is
not realized under the test-two dynamics. Indeed, the proportion of population 2
players choosing to continue at the last node—a weakly dominated strategy—is not
vanishingly small, just like in the mean dynamic.

Using the empirical distribution on population states, we can compute the ex-
pected distribution of the duration of play. In fig. 7 we present this information,
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Figure 7. Expected fraction of matches that reach each terminal
node i ∈ {1, ..., 5} in a Centipede of length d = 4 with κ = 1.
For N = 10 and N = 100, the height of each column corresponds
to the average value over the empirical distribution on population
states. The vertical lines correspond to the average ± one standard
deviation. MD: mean dynamics.

corresponding to the empirical distributions from figs. 5 and 6. The pattern illus-
trated in fig. 7 agrees broadly with the qualitative results of experimental studies:
most matches continue beyond the first decision node; (conditional) probabilities of
stopping are higher at later decision nodes; and iii) there is a significant fraction of
matches that get to the last terminal node.
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Figure 8. Expected duration of play, averaged over the empirical
distribution on population states, in Centipede with d = 4, for
various numbers of trials κ and population sizes N .

4.1.2. Four-node Centipede, several trials. To illustrate the effects of increasing the
number of trials κ that agents perform, fig. 8 presents simulation data on expected
match duration for various choices of κ and of the population size N , where again
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the expectations are taken over the empirical distributions from simulation runs.
Depending on the number of trials, this process can present one or several absorbing
stop-immediately states such that all players in the player 1 population stop at
their first decision node, and most players in the player 2 population do the same.
Figure 8 shows that increasing κ leads to a gradual decline of the (expected) duration
of play. An exception occurs when κ increases from 1 to 2, just like we saw in the
mean dynamic (see appendix A.6 for a discussion of this effect). As the number of
trials κ increases, a value of κ is reached such that getting to an absorbing (stop-
immediately) state is not a rare event in the considered time span anymore, and,
if the number of trials is increased further, most simulations get to an absorbing
state quickly. The expected duration of play in simulations with N = 100 that do
not reach an absorbing state is well approximated by the mean dynamic (compare
figs. 4 and 8).
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Figure 9. Sample paths of the expected duration of play in a 4-
node Centipede played in populations of size N = 100 for various
choices of κ.

Not apparent from fig. 8 is the fact that as the number of trials κ grows, sim-
ulation runs begin to exhibit a markedly cyclical behavior, just like we saw in the
deterministic approximation. Using a population size of N = 100, fig. 9 shows sam-
ple paths of the expected duration of play for different number of trials κ during
testing. The qualitative behavior of simulations that do not reach the absorbing
state is reasonably well approximated by the mean dynamic (2), as can be appreci-
ated comparing figs. 9 and 10. Finally, fig. 11 presents a histogram of the empirical
distribution of play when N = 100 and κ = 50; the cyclical nature of the popula-
tions’ behavior is manifest. As one would expect, the amplitude of the cycles in the
finite-population simulation is greater than in the mean dynamic (compare figs. 3(i)
and 11).

4.2. Longer centipedes. We now study dynamics in Centipede games with d = 10
nodes, as a representative case of long games.

4.2.1. Ten-node Centipede, one trial. For one trial, fig. 12 shows the mean and
standard deviation of match durations in Centipede games for different population
sizes, again computed from the empirical distribution of states in simulations. In
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Figure 10. Expected duration of play over solution trajectories
of the mean dynamic (2) in a 4-node Centipede for various choices
of κ.

(i) first movers population (ii) second movers population

Figure 11. Smoothed 3D histogram of the number of visits to
states in each population for a 4-node centipede played in popula-
tions of size N = 100 with κ = 50 trials. Cyclical behavior leads
the empirical distribution to take a crater-like form.

this case, we see that in virtually all matches, the game reaches one of the last 8
terminal nodes. As it happens with the interior rest point of the mean dynam-
ics, it also turns out that this distribution of play remains essentially unchanged
for Centipede games with larger numbers of decision nodes. In other words, the
distribution of behavior under test-two dynamics in every long Centipede game is
essentially the same, if we look backwards from the last decision node, with the
large majority of games (i.e. more than 90%) reaching one of the last 5 decision
nodes.

4.2.2. Ten-node Centipede, several trials. Figure 13 shows the expected duration
of play, averaged over the empirical distribution on population states, for different
values of κ. After an initial small jump upwards (see appendix A.6 for a discussion
of this effect), there is a slow gradual decrease of the duration of play with κ, up
until κ = N−1, corresponding to the situation in which, while testing each strategy,
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Figure 12. Expected fraction of matches that reach each terminal
node i ∈ {1, ..., 11}. Centipede with 10 decision nodes (d = 10)
and κ = 1. For N = 10 and N = 100, the height of each column
corresponds to the average value over the empirical distribution on
population states. The vertical lines correspond to the average ±
one standard deviation.
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Figure 13. Expected duration of play in a Centipede game with
10 decision nodes, averaged over the empirical distribution on pop-
ulation states, for different number of trials κ.

a player faces all but one member of the opposing population. If κ is increased to
N , tests are run against all members of the opposing population, so the test-two
dynamics are a pairwise version of exact best response dynamics [12, 43], and a
sharp discontinuity occurs: for this specification, but only for this specification, the
logic of backward induction holds force, and cooperation unravels in short order
until the backward induction state is reached. It is remarkable that even the small
reduction in information arising from facing all but one member of the opposing
population leads to a much more cooperative cyclical outcome.
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Figure 14. Evolution of the expected duration of play in a Cen-
tipede game with 10 decision nodes played in populations of size
N = 100, for different number of trials κ.

Figure 14 shows individual sample paths of the expected duration of play for
different numbers of trials κ in a Centipede of length d = 10 with N = 100. As in
the shorter Centipede, we see here that the overall level of cooperation decreases as
the number of trials grows, and that cycling through varying levels of cooperation
is apparent when the number of trials is large (e.g. κ ≥ 40). This cycling persists
until κ = 99, and then vanishes entirely when κ = 100 (a parameterization that
leads immediately to the backward induction state).

We now discuss the cycling behavior observed for large number of trials, taking as
a reference a Centipede with 10 decision nodes, 100 players in each population, and
κ = 99 (see fig. 14). Recall that in 10-node Centipedes, for i ∈ {1, ..., 5} strategy i
means “stop at your i-th decision node, and not before”, and strategy 6 corresponds
to “always continue”. A population state is characterized by the number of players
using strategies (1, ..., 6) in each population.

In fig. 14 with κ = 99 it is apparent that the process cycles between state regions
with large and much shorter duration of play. Picking up a state from the low-
duration-of-play zone, we observe a population state such that the number of players
is (0, 0, 76, 22, 2, 0) in the player 1 population, and (0, 32, 66, 2, 0, 0) in the
player 2 population. The observed concentration on two or three strategies in each
population (with progressive moves towards the strategies that stop earlier) is a
characteristic effect of the best-response-like unraveling process in the Centipede. At
the considered state, we can calculate the total payoffs that each revising agent can
obtain when testing each possible strategy, as well as the probabilities of obtaining
those payoffs, leading to Table 1. To distinguish between populations, we denote
strategy i for player 1 as ix and for player 2 as iy.

Note that, when those individuals who are the last ones to stop (in the considered
state, those playing 5x) try another strategy that stops at a later stage or does not
stop, in this case 6x, 6x is at no disadvantage with respect to 5x, and the test using
6x will provide a higher payoff than the test using 5x if the individual that is left
out when playing 6x with 99 partners (out of 100) stops at an earlier node than the
individual left out when testing 5x. Specifically, at the considered population state,
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Table 1. Possible payoffs obtained by each strategy, with their
probabilities, at a state next to the bottom of a cycle

Str # 0.32 0.66 0.02 Str # 0.76 0.22 0.02

1x 0 0 0 1y 297 297 297
2x 198 198 198 2y 32 495 495 495
3x 76 303 300 300 3y 66 468 465 465
4x 22 241 239 236 4y 2 450 448 445
5x 2 239 237 235 5y 448 446 444
6x 239 237 235 6y 448 446 444

Str: strategy; #: number of players using the corresponding strat-
egy. For each strategy, the three values on the right of the # column
are the three possible total payoffs obtainable at the considered
state by the corresponding strategy in 99 trials. Top numbers in
bold: probability of obtaining the payoffs on that column, at the
considered state.

the probability that a revising player playing 5x who tests 6x decides to switch to
6x is (0.66× 0.32 + 0.02× 0.98) ≈ 0.23.

Since the best-response-like unraveling process leads to stopping at earlier nodes,
those players who are currently the last ones to stop have more stop-later strate-
gies that can be tested, and those stop-later strategies can provide (with relatively
high probability) better results than the current strategies, due to the other pop-
ulation’s strategy variability (which will usually include at least two strategies, as
players adapt their strategies gradually). Once there is one or a few players in
the population who continue until the last stages, it becomes advantageous for any
player who meets them to stop at later stages of the game rather than stopping
early, so the process quickly moves towards stopping at the last stages, and, once
there, the slower-motion best-response-like process begins to unravel again, creating
the cycle-like behavior observed before (a more detailed discussion is provided in
appendix A.5).

5. Concluding remarks. The backward-induction solution in the Centipede game
has been shown to be very sensitive to the assumptions that players make about
the other players in the game. If a player thinks that her partner, with some small
probability, may be an “altruist” whose preferences do not correspond to the payoffs
of the game, it can be rational to keep cooperation for many periods [19, 18]. Here
we provide a different potential explanation for cooperation in the Centipede: we
assume that players’ preferences do correspond to the payoffs of the game and that
players follow an adaptive approach to change their behavior (i.e. strategy), ac-
cording to the results they obtain when testing alternative strategies, choosing the
strategy that performs best in the test. This experience-based adaptive mechanism
leads to population equilibria that are consistent with the characteristic qualita-
tive features observed in experimental studies. A key factor for this result is the
variability on the comparative results that two strategies can obtain when tested,
which in turn is due to the fact that each strategy is effectively tested against po-
tentially different partners. As a result, strategies that often perform well in the
game, such as “always continue” in the Centipede, can be present in equilibria, even
if there is a weakly dominating alternative, or an alternative with better average
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performance. The equilibrium we study is made up by the strategies that are most
often the most successful at that equilibrium (as one could expect, being an evo-
lutionary equilibrium), and it constitutes an interesting example of how adopting
better-performing strategies can lead to completely different equilibria when agents
base their decisions on –potentially variable– experienced payoffs (even if averaged
over many trials), versus when strategies’ performance is measured by a precise
deterministic payoff.
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Appendix.

A.1. Proofs of analytical results.

Proof of Proposition 1. The proof consists in showing that a necessary condition
for a state to be absorbing is that all agents in population 1 are choosing strategy 1,
and that it is possible to go from any non-absorbing state to an absorbing state in
a finite number of steps. Note that the Markov chain is aperiodic since γ ∈ (0, 1).

Consider a state (n1, . . . , ns1 |m1, . . . ,ms2), where ni denotes the number of
agents in the first movers population with strategy i and mj the number of agents
in the second-movers population with strategy j. The backwards induction state
(N, 0, . . . , 0|N, 0, . . . , 0) is absorbing for any d, κ and γ ∈ (0, 1), but there can be
other absorbing states nearby (see footnote 6).

Assume that we are at a state where n1 6= N , i.e. not every first mover stops
at their first decision node. The following argument shows that such a state is not
absorbing. Let imax be the greatest strategy number used in the first population,
i.e. imax = max(i;ni > 0), and let jmax be the greatest strategy number used in the
second population, i.e. jmax = max(j;mj > 0). Naturally, imax ≥ 2 and jmax ≥ 1.
Consider the following two possibilities:

• imax > jmax. In this case, there is at least one agent in population 1 who is
using strategy imax > jmax ≥ 1 and would never stop the game, because all her
opponents in population 2 choose to stop at an earlier node. At this state, there
is a positive probability that only this agent revises her strategy, she considers
strategy jmax < imax as an alternate strategy, and she obtains a greater payoff
when testing jmax than when testing imax.13 This means that the considered
state is not absorbing, since there is a positive probability of moving to another
state where one (and only one) agent in population 1 has switched to a lower
strategy. This move will not change the value of jmax but will potentially bring
imax down to jmax.

• imax ≤ jmax. In this case, there is at least one agent in population 2 who
is using strategy jmax ≥ imax ≥ 2 and would never stop the game, because
all his opponents in population 1 choose to stop at an earlier node. At this

13This is the case because at that state, jmax obtains at least the same payoff as imax against
any given opponent, and a strictly greater payoff than imax against opponents who are using jmax.
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state, there is a positive probability that only this agent revises his strategy, he
considers strategy (imax − 1) < jmax as an alternate strategy, and he obtains a
greater payoff when testing (imax − 1) than when testing jmax.14 This means
that the considered state is not absorbing, since there is a positive probability
of moving to another state where one (and only one) agent in population 2 has
switched to a lower strategy. This move will not change the value of imax but
will potentially bring jmax down to (imax − 1).

By applying the logic above repeatedly, we are able to identify a path that can
take the dynamics from any state where n1 6= N to a state where n1 = N . Thus,
all absorbing states must have n1 = N . The following argument shows that it is
always possible to go from any non-absorbing state where n1 = N to the backwards
induction (absorbing) state.

Consider a state where n1 = N and it is not absorbing. At this state, all strategies
for the second movers yield the same payoff (i.e. 0), so no agent in population 2
would change her strategy if given the opportunity. Since the state is not absorbing
by assumption, this means that at least one agent in population 1 could change
her strategy if given the opportunity. Since all agents in population 1 are facing
the same situation, this means that there is a positive probability that all of them
change their strategy if given the opportunity (and the probability of switching to
any given strategy is the same for all of them).

Let α > 1 be the minimum strategy number (greater than 1) that could be
selected by revising agents in population 1. There is a positive probability that
all agents in population 1 revise their strategy simultaneously and they all adopt
strategy α. After this, there is a positive probability that all agents in population 2
revise their strategy simultaneously and adopt the (unique) best response to strategy
α, which –for the second movers– is strategy number (α− 1). The key is that now
all agents in each population are choosing the same strategy, so there is a positive
probability that the usual best-response-like unraveling process develops. To be
specific, there is now a positive probability that all agents in population 1 revise
their strategy simultaneously and adopt strategy (α−1), which is the best response
to second movers’ (α − 1). If α was equal to 2, we would be now at the backward
induction (absorbing) state. If not, we can repeat this argument as many times as
necessary to get to the backwards induction (absorbing) state.

In summary, we have proved that all absorbing states have n1 = N , and that
it is possible to go from any non-absorbing state to an absorbing state in a finite
number of steps. Applying standard results in the theory of Markov chains we can
conclude that the process will eventually get to one of the absorbing states (where
n1 = N) and stay there. Thus, eventually, a state where all games end at the first
node will be reached.

Proof of Proposition 2. Letting s = s1 + s2, we denote the tangent space of the
state space Ξ = X × Y by TΞ = TX × TY = {(z1, z2)′ ∈ Rs :

∑
i∈S1 z1i =

0 and
∑
j∈S2 z2j = 0}, and we denote the affine hull of Ξ by aff(Ξ) = TΞ + ξ†.

Writing our dynamics as

ξ̇ = V (ξ), (D)

14This is the case because at that state, (imax − 1) obtains at least the same payoff as jmax
against any given opponent, and a strictly greater payoff than jmax against opponents who are
using imax.
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we have V : aff(Ξ) → TΞ, and so DV (ξ)z ∈ TΞ for all ξ ∈ Ξ and z ∈ TΞ. We
can thus view DV (ξ) as a linear map from TΞ to itself, and the behavior of the
dynamics in the neighborhood of a rest point is determined by the eigenvalues
and eigenvectors of this linear map. The latter are obtained by computing the
eigenvalues and eigenvectors of the product matrix ΦDV (ξ)Φ, where V : Rs → Rs
is the natural extension of V to Rs, and Φ is the orthogonal projection of Rs onto

TΞ, i.e., the block diagonal matrix with diagonal blocks I − 1
s1 11′ ∈ Rs1×s1 and

I − 1
s2 11′ ∈ Rs2×s2 , where 1 = (1, . . . , 1)′. Since V maps Ξ into TΞ, the projection

is only needed when there are eigenspaces of DV (ξ) that intersect both the set TΞ
and its complement.

In what follows we write δi ∈ Rs and ξj ∈ Rs for the standard basis vectors
corresponding to strategies i ∈ S1 and j ∈ S2, respectively. We also write all
expressions in terms of the numbers of decision nodes rather than the numbers of
strategies, as doing so usually generates more compact expressions. To eliminate
superscripts we use the notations m ≡ d1 = s1 − 1 and n ≡ d2 = s2 − 1 for the
numbers of decision nodes.

The linearization of the dynamic (D) at rest point ξ† is the linear differential
equation

ż = DV (ξ†)z (L)

on TΞ.
Examining display (1), it is easy to verify that, for d ≥ 4, all states in {(x, y) ∈

aff(Ξ): x = (1, 0 . . . , 0)′, y1 = 1} are rest points. The existence of these sets of rest
points implies that the derivative matrices DV (ξ†) have eigenvalues equal to zero,
so that the standard results from linearization theory cannot be applied. To show
state ξ† is nevertheless repelling, we appeal to results from center manifold theory
([16, 17], [25]) which describe the behavior of nonlinear dynamics near nonhyperbolic
rest points. The stable subspace Es ⊆ TΞ of (L) is the span of the real and imaginary
parts of the eigenvectors and generalized eigenvectors of DV (ξ†) corresponding to
eigenvalues with negative real part. The unstable subspace Eu ⊆ TΞ of (L) is
defined analogously. The center subspace Ec ⊆ TΞ is the span of the real and
imaginary parts of eigenvectors corresponding to eigenvalues with zero real part.

Let Acs = Ec ⊕ Es + ξ† be the affine space that is parallel to Ec ⊕ Es and that
passes through ξ†. Below we show that under the considered test-two dynamic ((1)),
the subspace Ec⊕Es has dimension d− 1, and the affine space Acs is a supporting
hyperplane to Ξ at ξ†.

Linearization is much less simple for nonhyperbolic rest points than for hyperbolic
ones—see [25]. However, for our purposes, it is enough that there exists a (local)
center-stable manifold M cs that is tangent to Acs, and is invariant under (D) [17].
This manifold need not be unique; see [17, section 4], for an example. But for any
choice of center-stable manifold M cs, there is a neighborhood O ⊂ aff(Ξ) of ξ†

satisfying O ∩ Ξ ∩M cs = {ξ†} such that solutions to (D) from initial conditions in
(O ∩ Ξ) \ {ξ†} eventually move away from ξ†; see [16, p. 336], or see [25, Theorem
2.12.2], for a closely related and more explicitly presented result. This and the
properties from the previous paragraph imply that ξ† is a repellor of the considered
test-two dynamics on Ξ.
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Starting from (1), we compute that under the considered test-two dynamic,

DV (ξ†) =



0 1
m · · · · · · 1

m 2 1 · · · 1
0 − 1

m 0 · · · 0 0 1
m · · · 1

m

0 0 − 1
m · · ·

...
...

... · · ·
...

...
... · · · · · · 0

...
...

...
0 0 · · · 0 − 1

m 0 1
m · · · 1

m

2 1 · · · · · · 1 0 · · · · · · 0

0 1
n · · · · · · 1

n

... · · ·
...

...
... · · ·

...
... · · ·

...
0 1

n · · · · · · 1
n 0 · · · · · · 0


For d ≥ 2, the eigenvalues of DV (ξ†) with respect to TΞ and the bases for their
eigenspaces are:

0,
{
ξ2 − ξj : j ∈ {3, . . . , s2}

}
if d ≥ 4; (3)

− 1
m ,

{
δ2 − δi : i ∈ {3, . . . , s1}

}
if d ≥ 3; (4)

λ− ≡ − 1
2m −

√
1 + ( 1

2m )2,
{

(−λ−, λ−
m , . . . , λ−

m

∣∣∣−1, 1
n , . . . ,

1
n )′
}

; and (5)

λ+ ≡ − 1
2m +

√
1 + ( 1

2m )2,
{

(−λ+, λ+

m , . . . , λ+

m

∣∣∣−1, 1
n , . . . ,

1
n )′
}
. (6)

The eigenvectors in (3) span the center subspace Ec of the linear equation ż =
DV (ξ†) z, while the eigenvectors in (4) and (5) span the stable subspace Es. The
normal vector z⊥ to the hyperplane Ec ⊕ Es is the orthogonal projection onto TΞ
of the auxiliary vector

z⊥aux = 1
λ−
δ1 − ξ1

which satisfies

(z⊥)′(δi − δ1) = − 1
λ−

> 0 for i ∈ S1 \ {1}, and

(z⊥)′(ξj − ξ1) = 1 > 0 for j ∈ S2 \ {1}.

The collection of vectors {δi− δ1 : i ∈ S1}∪{ξj − ξ1 : j ∈ S2} describes the motions
along all edges of the convex set Ξ emanating from state ξ†. Thus the fact that
their inner products with z⊥ are all positive implies that the translation of Ec⊕Es
to ξ† is a hyperplane that supports Ξ at ξ†.

For d ≥ 4, the affine set through ξ† defined by the eigenvectors with zero eigen-
value consists entirely of rest points. This fact and Corollary 3.3 of [38] imply that
this affine set is the unique center manifold through ξ†.

Proof of Proposition 3. The proof follows closely [33]. For completeness we repro-
duce here the required results. The following differential inequality will allow us to
obtain simple lower bounds on the use of initially unused strategies. In all cases in
which we apply the lemma, v(0) = 0.

Lemma A.1. [33] Let v : [0, T ]→ R+ satisfy v̇(t) ≥ a(t)−v(t) for some a : [0, T ]→
R+. Then

v(t) ≥ e−t
(
v(0) +

∫ t

0

es a(s) ds

)
for all t ∈ [0, T ]. (7)
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For the analysis to come, it will be convenient to work with the set S = S1 ∪ S2

of all strategies from both populations, and to drop population superscripts from
notation related to the state—for instance, writing ξi rather than ξpi .

We use Lemma A.1 to prove inward motion from the boundary under test-two
dynamics in the following way. Write ξ̇i = ri(ξ)− ξi, where ri(ξ) is the polynomial
appearing in the formula (1). Let {ξ(t)}t≥0 be the solution to the dynamic with
initial condition ξ(0). Let S0 = supp(ξ(0)) and Q = 1

2 min{ξh(0) : h ∈ S0}, and,

finally, let S1 = {i ∈ S \ S0 : ri(ξ(0)) > 0} and R = 1
2 min{rk(ξ(0)) : rk(ξ(0)) > 0}.

By the continuity of (1), there is a neighborhood O ⊂ Ξ of ξ(0) such that every
χ ∈ O satisfies χh > Q for all h ∈ S0 and ri(χ) ≥ R for all i ∈ S1 . And since (1) is
smooth, there is a time T > 0 such that ξ(t) ∈ O for all t ∈ [0, T ]. Thus applying
Lemma A.1 shows that

ξi(t) ≥ R(1− e−t) for all t ∈ [0, T ] and i ∈ S1. (8)

Now let S2 be the set of j /∈ S0 ∪ S1 for which there is a term of polynomial rj
whose factors all correspond to elements of S0 or S1. If this term has a factors in S0,
b factors in S1, and coefficient c, then the foregoing claims and Lemma A.1 imply
that

ξj(t) ≥ cQa e−t
∫ t

0

es(R(1− e−s))b ds for all t ∈ [0, T ]. (9)

Proceeding sequentially, we can obtain positive lower bounds on the use of any
strategy for times t ∈ (0, T ] by considering as-yet-unconsidered strategies k whose
polynomials rk have a term whose factors all correspond to strategies for which
lower bounds have already been obtained. Below, we prove that solutions to the
test-two dynamic from states ξ(0) 6= ξ† immediately enter int(Ξ) by showing that
the strategies in S \ S0 can be considered in a sequence that satisfies the property
just stated.

To proceed, we use the notations i[1] and i[2] to denote the ith strategies of players
1 and 2. We also introduce the linear order ≺ on S defined by 1[1] ≺ 1[2] ≺ 2[1] ≺
2[2] ≺ 3[1] ≺ . . . , which arranges the strategies according to how early they stop
play in Centipede.

Fix an initial condition ξ(0) 6= ξ†. We can sequentially add all strategies in S \S0

in accordance with the property above as follows:
(I) First, we add the strategies {i ∈ S \ S0 : i ≺ max S0} in decreasing order. At

the point that i has been added, i’s successor h has already been added; a revising
agent tests strategy i with probability c ≥ 1

max(s1,s2)−1 ; then, if both of the tested

strategies (i and another strategy) are tested against opponents playing h, strategy
i is selected, as it is the unique best response to opponents playing h. Let S I denote
the set of strategies added during this stage. The assumption that ξ(0) 6= ξ† implies
that S0 ∪ S I contains 1[1], 1[2], and 2[1].

(II) Second, we add the strategies j ∈ S2 \ (S0 ∪ S I). We can do so because j is
tested by a revising agent with probability c ≥ 1

max(s1,s2)−1 and because j provides

the highest payoff when it is tested against 2[1] and the alternative strategy is tested
against 1[1].

(III) Third, we add the strategies k ∈ S1 \ (S0 ∪ S I). We can do so because k is
tested by a revising agent with probability c ≥ 1

max(s1,s2)−1 and because k provides

the highest payoff when it is tested against 2[2] and the alternative strategy is tested
against 1[2].
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A.2. Proofs of computational results.

Proof of Proposition 4. The exact rest points have been obtained by computing a
Gröbner basis for the system of polynomials with rational coefficients (1), following
the methods described in detail in [33, appendix C and section I in the supplemen-
tary appendix]. The only difference with [33] is that here we have to impose the
additional constraint x1 6= 1 to get a polynomial system with a finite solution set.
This was done by adding the auxiliary variable z and the polynomial (x1−1)∗z = 1.

The code used to compute these rest points has been implemented in the open-
source Mathematica notebook which is freely available at https://github.com/luis-
r-izquierdo/bep-centipede. In particular, the function implemented for this purpose
is ExactRestPoints. To obtain all the rest points of the mean dynamic (1) in a
Centipede game with d decision nodes, it is sufficient to run the following code in
the Mathematica notebook:

ExactRestPoints["two", "stick", d]

Using this function the program computes the exact rest points up to d = 8.
Table 2 reports the approximate values of the interior rest points ξ∗ = ξ∗(d), refer-
ring to strategies using the last-to-first notation [k] introduced in section 2.1. The
numbers reported in the table are decimal approximations, since the exact values
are algebraic numbers that do not admit an exact decimal representation.

To prove that the interior rest point of the mean dynamic (1) is asymptotically
stable, in principle we could use linearization. However, since the components of ξ∗

are algebraic numbers, computing the eigenvalues of the Jacobian of the dynamic
at the interior rest point requires finding the exact roots of a polynomial with
algebraic coefficients, a computationally intensive problem. Fortunately, we can
prove local stability without doing so using an eigenvalue perturbation theorem [13,
Observation 6.3.1], as detailed in [33, Appendix C]. The approximate eigenvalues
NDSolveMeanDynamicsTestAllMinIfTieManyTrialsare reported in Table 3.

The computational function implemented to prove stability, whose code is open
for inspection, is LocalStabilityOfInteriorRestPoint. To replicate this compu-
tational proof for a Centipede game with d decision nodes, it is sufficient to run the
following code in the Mathematica notebook:

LocalStabilityOfInteriorRestPoint["two", "stick", d]

Proof of Proposition 5. To argue that the interior rest point ξ∗ = (x∗, y∗) is almost
globally stable we introduce the candidate Lyapunov function

L(x, y) =

s1∑
i=2

(xi − x∗i )2 +

s2∑
j=2

(yj − y∗j )2. (10)

In words, L(x, y) is the squared Euclidean distance from (x, y) to (x∗, y∗) if the
points in the state space Ξ are represented in Rd by omitting the first components
of x and y. For the Centipede game of lengths 2 and 3, we are able to verify
that L is a Lyapunov function using an algorithm from real algebraic geometry
called cylindrical algebraic decomposition [6]. However, exact implementations of
this algorithm fail to terminate in longer games.

The computational function implemented to prove almost global stability, whose
code is open for inspection, is GlobalStabilityOfInteriorRestPoint. To repli-
cate this computational proof for a Centipede game with d decision nodes, it is
sufficient to run the following code in the Mathematica notebook:

GlobalStabilityOfInteriorRestPoint["two", "stick", d]

https://github.com/luis-r-izquierdo/bep-centipede
https://github.com/luis-r-izquierdo/bep-centipede
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Table 2. The interior rest point ξ∗ = ξ∗(d) of the dynamic for
Centipede of lengths d ∈ {2, . . . , 20}. p denotes the penultimate
player, q the last player. The dashed lines separated exact (d ≤ 8)
from numerical (d ≥ 9) results. The numbers shown are approxi-
mations, since the exact values are algebraic numbers that do not
admit an exact decimal representation.

p [7] [6] [5] [4] [3] [2] [1] [0]

2 - - - - - - .618034 .381966
3 - - - - - - .539189 .460811
4 - - - - - .208426 .411450 .380124
5 - - - - - .223867 .398692 .377441
6 - - - - .035722 .223253 .378763 .362262
7 - - - - .040882 .225279 .374384 .359455
8 - - - .002980 .042792 .225384 .371574 .357271

9 - - - .003239 .043396 .225559 .370966 .356839
10 - - .000138 .003311 .043558 .225576 .370747 .356670
11 - - .000145 .003327 .043595 .225585 .370707 .356641
12 - 4.19 × 10−6 .000147 .003330 .043603 .225586 .370697 .356633
13 - 4.32 × 10−6 .000147 .003331 .043604 .225586 .370695 .356632
14 9.04 × 10−8 4.34 × 10−6 .000147 .003331 .043604 .225586 .370695 .356632
15 9.24 × 10−8 4.34 × 10−6 .000147 .003331 .043604 .225586 .370695 .356632
16 9.27 × 10−8 4.34 × 10−6 .000147 .003331 .043604 .225586 .370695 .356632
17 9.28 × 10−8 4.34 × 10−6 .000147 .003331 .043604 .225586 .370695 .356632
...

...
...

...
...

...
...

...
...

20 9.28 × 10−8 4.34 × 10−6 .000147 .003331 .043604 .225586 .370695 .356632

q [7] [6] [5] [4] [3] [2] [1] [0]

2 - - - - - - .618034 .381966
3 - - - - - .369102 .369102 .261795
4 - - - - - .344955 .364555 .290490
5 - - - - .087713 .310211 .329668 .272409
6 - - - - .100021 .304394 .323241 .272345
7 - - - .010544 .104027 .298920 .317193 .269316
8 - - - .011813 .105888 .297664 .315745 .268891

9 - - .000650 .012191 .106378 .297094 .315103 .268585
10 - - .000692 .012297 .106528 .296977 .314969 .268537
11 - 2.42 × 10−5 .000701 .012321 .106559 .296944 .314931 .268520
12 - 2.51 × 10−5 .000703 .012326 .106566 .296938 .314925 .268518
13 6.17 × 10−7 2.53 × 10−5 .000703 .012327 .106567 .296937 .314923 .268517
14 6.33 × 10−7 2.53 × 10−5 .000703 .012327 .106567 .296936 .314923 .268517
15 6.35 × 10−7 2.53 × 10−5 .000703 .012327 .106567 .296936 .314923 .268517
16 6.36 × 10−7 2.53 × 10−5 .000703 .012327 .106567 .296936 .314923 .268517
...

...
...

...
...

...
...

...
...

20 6.36 × 10−7 2.53 × 10−5 .000703 .012327 .106567 .296936 .314923 .268517
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A.3. Procedures to obtain numerical results on the deterministic approx-
imations.

A.3.1. Numerical results for the dynamics with one trial. The numerical estimates
of rest points for d > 8 have been computed following the methods described in de-
tail in [33, section II.3 in the supplementary appendix]. The code used to compute
these rest points has been implemented in the open-source Mathematica notebook,
in the function RationalApproximateRestPoint. This function computes a ra-
tional approximation of the stable interior rest point using exact arithmetic. To
replicate this computation in a Centipede game with d decision nodes, it is suffi-
cient to run the following code in the Mathematica notebook:

RationalApproximateRestPoint["two", "stick", d]

Table 2 reports the approximate values of the interior rest points ξ∗ = ξ∗(d) up
to d = 20, but the pattern continues for longer games.

The numerical estimates of the eigenvalues of the Jacobian of the dynamic at
the interior rest point have been computed using the function EigenvaluesAtRa-

tionalApproximateRestPoint. This function computes the exact eigenvalues of
the Jacobian of the dynamic at the rational approximation to the interior rest point
obtained from a call to RationalApproximateRestPoint. To replicate this compu-
tation in a Centipede game with d decision nodes, it is sufficient to run the following
code in the Mathematica notebook:

EigenvaluesAtRationalApproximateRestPoint["two", "stick", d]

Table 3 reports the approximate values of the eigenvalues up to d = 20.
We also conducted an extensive numerical computation that suggests that propo-

sition 5 (which proves that the interior point is an almost globally asymptotically
stable state for lengths 2 ≤ d ≤ 3) extends to much longer Centipede games.
Specifically, we tried to verify numerically that the squared Euclidean distance to
the interior rest point (x∗, y∗), i.e. function W (x, y) (11), is a Lyapunov function
for longer games.

W (x, y) =

s1∑
i=1

(xi − x∗i )2 +

s2∑
j=1

(yj − y∗j )2 (11)

In particular, for games of lengths 4 through 20, we chose one billion (109)
points from the state space Ξ uniformly at random, and evaluated a floating-point
approximation of Ẇ at each point. In all instances, the approximate version of
Ẇ evaluated to a negative number. This numerical approach is much stronger
(and much faster) than one based on the computation of numerical solutions to
the differential equation (1): it not only avoids the numerical errors inherent in
obtaining approximate solutions to (1), but also provides evidence about the global
structure of the dynamics.

The evaluation of the floating-point approximation of L̇ at various points can be
replicated using the function NumericalGlobalStabilityOfInteriorRestPointLya-

punov.

A.3.2. Numerical results for the dynamics with several trials. The numerical ex-
ploration of the mean dynamic with several trials has been conducted using the
function NDSolveMeanDynamicsManyTrials. This function uses Mathematica’s ND-
Solve function to compute a numerical solution of the mean dynamic (2), where
the number of trials κ and the initial condition of the solution can be specified by
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the user. The solution is computed until the time at which the norm of the law of
motion is sufficiently small (where what constitutes sufficiently small can be chosen
by the user) or until a maximum time chosen by the user is reached. The function
also graphs the components of the state as a function of time, reports the termi-
nal point and the time at which this point is reached, and integrates the expected
duration of play over the solution trajectory. This function was used in producing
figs. 3, 4 and 10. As an example, the solution trajectories shown in fig. 10 can be
obtained by running the following code:

NDSolveMeanDynamicsManyTrials["two", "stick", 4, k],
where k must be replaced with the desired number of trials.

A.4. Procedure to obtain numerical results from simulations with finite
populations. The agent-based model used to simulate the test-two dynamics on
finite populations has been implemented in the open-source platform NetLogo [41]
and is freely available at https://luis-r-izquierdo.github.io/centipede-test-two.

The reported values for the estimated cooperative regime of the test-two dynamic
are calculated using one long run in every case, starting from random initial con-
ditions. We make sure that the obtained sample corresponds to a single regime by
checking that various time-averaged statistics present stability along the sample.

Concretely, to report average values for the test-two dynamic, in each run, we let
the process evolve for 104 time steps before measuring values, to let the effect of the
random initial condition fade away.15 We then measure values for 105 time steps.
To check that the considered time framework captures a stable regime in every case
(stable on average along time, as the population state is always changing and, for
large κ, the dynamic often presents a cyclical character), and that the process does
not present a change of regime during the simulated run, we calculate at every time
step, according to the population state, the expected fraction fj of matches with
duration of play (reached terminal node) j ∈ {1, ..., d + 1}. We then compare the
average values of fj corresponding to the last 10% periods of the sample with the
average ones corresponding to the whole sample. In most of the simulated runs,
the differences between the two average values for fj obtained this way were below
1% for every j. In fact, only for the short centipede (d = 4), smallest population
size (N = 10) and number of trials κ = 6, in fig. 8, we represent a value from a
run that changed regime and got absorbed at an stop-immediately state during the
reporting periods (between periods 104 and 11× 104).

A.5. Analysis of the cycling behavior for large number of trials. In this
section we discuss with more detail the cycling behavior observed for large number of
trials, taking as a reference a Centipede with 10 decision nodes, 100 players in each
population, and number of trials κ = 99 (see fig. 14). Recall that, for i ∈ {1, ..., 5},
strategy i means “stop at your i-th decision node, and not before”, and strategy 6
corresponds to “always continue”.

Looking at a random simulation when approaching the low-duration-of-play zone
of the typical cycle-like patterns that are observed for high κ, we observe a popula-
tion state such that the number of players using strategies (1, ..., 6) is (0, 66, 34, 0,
0, 0) in the player 1 population, and (4, 89, 7, 0, 0, 0) in the player 2 population. At
the considered state, we can calculate the total payoffs that each revising agent can
obtain when testing each possible strategy, as well as the probabilities of obtaining

15The evolution of the process towards the attractive cooperative regime is usually much quicker
than that, as can be seen in figs. 9 and 14.

https://luis-r-izquierdo.github.io/centipede-test-two
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those payoffs, leading to table 4, where we denote strategy i for player 1 as ix and
for player 2 as iy.

Table 4. Possible payoffs obtained by each strategy, with their
probabilities, at a state near the bottom of a cycle

Str # 0.04 0.89 0.07 Str # 0.66 0.34

1x 0 0 0 1y 4 297 297
2x 66 189 186 186 2y 89 300 297
3x 34 114 112 109 3y 7 266 264
4x 107 105 103 4y 266 264
5x 107 105 103 5y 266 264
6x 107 105 103 6y 266 264

Str: strategy; #: number of players using the correspond-
ing strategy. For each strategy, the values on the right of
the # column are the possible total payoffs obtainable at the
considered state by the corresponding strategy in 99 trials.
Top numbers in bold: probability of obtaining the payoffs
on that column, at the considered state.

When those individuals who are the last ones to stop (in the considered state,
those playing 3y) try another strategy that stops at a later stage or does not stop,
in this case 4y, 5y or 6y, those strategies are at no disadvantage with respect to
3y, and the test using them can provide a higher payoff than the test using 3y
with a considerably high probability (0.34 · 0.66 = 0.22). This shows that it is
very likely that some of those individuals using 3y will change to using 4y, 5y or
6y, and, more generally, it illustrates how likely it is that cooperative strategies
appear in the population as the unraveling process develops towards the backward
induction state. Once we have some strategies stopping at the last decision nodes
in one population, the other population follows easily. In our example, after some
simulation steps we observe a population state such that the number of players
using strategies (1, ..., 6) is (0, 78, 15, 2, 2, 3) in the player 1 population, and (20,
75, 2, 1, 1, 1) in the player 2 population. At this state we obtain table 5

Table 5. Possible payoffs obtained by each strategy, with their
probabilities, at a state leaving the bottom of a cycle

Str # 0.2 0.75 0.02 0.01 0.01 0.01 Str # 0.78 0.15 0.02 0.02 0.03

1x 0 0 0 0 0 0 1y 20 297 297 297 297 297
2x 78 141 138 138 138 138 138 2y 75 264 261 261 261 261
3x 15 76 74 71 71 71 71 3y 2 263 261 258 258 258
4x 2 80 78 76 73 73 73 4y 1 271 269 267 264 264
5x 2 83 81 79 77 74 74 5y 1 275 273 271 269 266
6x 3 84 82 80 78 76 73 6y 1 272 270 268 266 264

Str: strategy; #: number of players using the corresponding strategy. For each strat-
egy, the values on the right of the # column are the possible total payoffs obtainable
at the considered state by the corresponding strategy in 99 trials. Top numbers in
bold: probability of obtaining the payoffs on that column, at the considered state.

The first two columns of possible payoff values for the player 1 population show
that revising players using 3x will likely adopt a strategy that stops later, and,
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looking at the first two columns of possible payoff values for the player 2 population,
it can be seen that the same happens for the majority of the player 2 population,
who are using strategy 2y: if they test 4y, 5y or 6y there is a probability of at least
0.95 that the corresponding strategy will be adopted. After a few moves in that
direction, it soon becomes advantageous in population one to use the last strategies
too, instead of 2x, which quickly leads the process towards the last strategies in
both populations (see table 6).

Table 6. Possible payoffs obtained by each strategy, with their
probabilities, at a state leaving the bottom of a cycle

Str # 0.24 0.55 0.03 0.04 0.08 0.06 Str # 0.73 0.10 0.04 0.04 0.09

1x 0 0 0 0 0 0 1y 24 297 297 297 297 297
2x 73 129 126 126 126 126 126 2y 55 279 276 276 276 276
3x 10 116 114 111 111 111 111 3y 3 303 301 298 298 298
4x 4 149 147 145 142 142 142 4y 4 325 323 321 318 318
5x 4 173 171 169 167 164 164 5y 8 339 337 335 333 330
6x 9 177 175 173 171 169 166 6y 6 330 328 326 324 322

Str: strategy; #: number of players using the corresponding strategy. For each strat-
egy, the values on the right of the # column are the possible total payoffs obtainable at
the considered state by the corresponding strategy in 99 trials. Top numbers in bold:
probability of obtaining the payoffs on that column, at the considered state.

A.6. Initial effect of increasing the number of trials. In this section we dis-
cuss the initial effect that increasing the number of trials κ has on the expected
duration of play, averaged over the empirical distribution on population states at
the cooperative regime (see figs. 8 and 13), and the corresponding effect in the
deterministic approximation (see fig. 4).

To explain this effect, i.e., the increase on the expected game duration when
moving from κ = 1 to κ = 2, consider a centipede with d decision nodes and
κ = 1. For this example, let us refer to strategies using the last-to-first notation
[k] introduced in section 2.1. The payoffs depending on the stopping strategy are
shown in table 7. Suppose (as it will be often the case near the attractor) that
all players are stopping at one of their last 5 decision nodes: the strategies being
played are [0]x, [1]x, . . . , [4]x, [0]y, [1]y, . . . , [4]y and the duration of play is between
d− 7 and d+ 1. Then (see table 7),

• All the strategies being played in population 1 obtain a payoff π ≥ d− 9, while
any alternative strategy for player 1 obtains a payoff π ≤ d−10 and consequently
cannot be adopted.

• All the strategies being played in population 2 obtain a payoff π ≥ d− 8, with
[5]y being the only other strategy that, if tested, could be adopted by a revising
player 2, as it obtains a payoff π = d− 7.

But for [5]y to be adopted, the revising player 2 when testing his current strategy
must obtain a payoff π = d− 8, i.e., it must meet a [4]x player. The probability of
that event is x[4], the fraction of [4]x players in population 1.
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On the other hand, if the number of trials is 2, strategy [5]y would obtain a total
payoff π = 2d − 14 and, given that the strategies being played ([0]y, [1]y, . . . , [4]y)
would obtain one of the payoffs shown in table 8 (at the crossing cell of the duration
of play in each trial), the only way strategy [5]y can be adopted is if player 2 when
testing his current strategy meets a [4]x player in both trials, which is usually much
more unlikely than meeting a [4]x player in one trial, as the first probability is

x[4]
N x[4]−1
N−1 < x2[4] while the second probability is x[4].

This increased difficulty to be selected when κ = 2 (vs. κ = 1) for the strategies
that are near the most frequent ones at the equilibrium but are less cooperative
explains the quicker decay in the fraction of less-cooperative strategies and the
associated difference between the expected game duration obtained for κ = 1 and
κ = 2. This effect does not go on beyond κ = 2 because from κ = 3 there are
additional events that can make strategy [5]y beat the strategies that stop later,
besides the event that they meet a [4]x player in all their trials. For instance, for
κ = 3, and taking, e.g., d = 20 (just to work with numbers for the payoffs instead
of letters), [5]y would obtain a payoff π = 3 · 13 = 39, and it would be selected if
the current strategy being tested meets a [4]x player three times (obtaining 3 · 12 =
36 < 39), but also if the current strategy being tested meets [4]x twice and [3]x
once, obtaining a payoff π = 12 + 12 + 14 = 38 < 39.

The effect just described depends on the cost/gain relation of the Centipede. Let
us look at the change in payoffs after a player chooses to continue as the combi-
nation of a gain b for each of the players and a cost c incurred only by the player
who continues. The standard payoffs that we have considered here (see section 2.1)
correspond to a cost of continuing c = 4 and a gain for each partner from a contin-
uation b = 3 (so the net cost of the decision to continue is b− c = −1). If the cost
of continuing is c = 7 and the shared gain for each partner from a continuation is
b = 6, then the payoff structure is as shown in table 9.






      

 c/b = 7/6

c/b = 4/3
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Figure 15. Expected duration of play in two 10-node Centipede
games with different cost/gain ratios c/b, averaged over the empir-
ical distribution on population states, for different number of trials
κ. N = 50.
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In this case, if the strategies being played are [0]x, [1]x, . . . , [4]x, [0]y, [1]y, . . . , [4]y,
the payoff when testing [5]y would be 11 per match, making a total payoff π = 11 ·κ,
while the payoff using the current strategy being played by player 2 would be 10 per
match if meeting [4]x or at least 15 per match otherwise, leading to a total payoff
π = 10·κ if meeting [4]x at every trial, or at least π = 10·κ+5 otherwise. This means
that playing with an [4]x player gives a payoff advantage of 1 to [5]y compared to the
player 2 strategies that stop later than [5]y, but those other strategies get a payoff
advantage of at least 5 over [5]y if they play with a player 1 that stops after [4]x.
Then, for κ ≤ 5, the chances of strategy [5]y being chosen always correspond to just
one possible event, i.e., that the current strategy meets a [4]x strategist on all its
κ trials; and this event has a probability that decreases steeply with κ. As before,
that decline in probabilities is not so steep for more than 5 trials, since in that case
there are more events leading to [5]y being selected. We can then expect the average
duration of play to be increasing with κ up to κ = 5. This is corroborated by the
data shown in Fig 15.
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