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1. Introduction  
Reinforcement learners interact with their environment and use their experience to choose 
or avoid certain actions based on the observed consequences. Actions that led to satisfactory 
outcomes (i.e. outcomes that met or exceeded aspirations) in the past tend to be repeated in 
the future, whereas choices that led to unsatisfactory experiences are avoided. The empirical 
study of reinforcement learning dates back to Thorndike’s animal experiments on 
instrumental learning at the end of the 19th century (Thorndike, 1898). The results of these 
experiments were formalised in the well known ‘Law of Effect’, which is nowadays one of 
the most robust properties of learning in the experimental psychology literature: 
“Of several responses made to the same situation those which are accompanied or closely followed by 
satisfaction to the animal will, other things being equal, be more firmly connected with the situation, 
so that, when it recurs, they will be more likely to recur; those which are accompanied or closely 
followed by discomfort to the animal will, other things being equal, have their connections to the 
situation weakened, so that, when it recurs, they will be less likely to occur. The greater the 
satisfaction or discomfort, the greater the strengthening or weakening of the bond.” (Thorndike, 
1911, p. 244) 

Nowadays there is little doubt that reinforcement learning is an important aspect of much 
learning in most animal species, including many phylogenetically very distant from 
vertebrates (e.g. earthworms (Maier & Schneirla, 1964) and fruit flies (Wustmann, 1996)). 
Thus, it is not surprising that reinforcement learning –being one of the most widespread 
adaptation mechanisms in nature– has attracted the attention of many scientists and 
engineers for decades. This interest has led to the formulation of various models of 
reinforcement learning and –when feasible– to the theoretical analysis of their dynamics. In 
particular, this chapter characterises the dynamics of one of the best known stochastic 
models of reinforcement learning (Bush & Mosteller, 1955) when applied to decision 
problems of strategy (i.e. games).  
The following section is devoted to explaining in detail the context of application of our 
theoretical analysis, i.e. 2-player 2-strategy games. Section 3 is a brief review of various 
models of reinforcement learning that have been studied in strategic contexts. Section 4 
presents the Bush-Mosteller reinforcement learning algorithm. Section 5 describes two types 
of critical points that are especially relevant for the dynamics of the process: self-reinforcing-
equilibria (SREs) and self-correcting-equilibria (SCEs). Sections 6 and 7 detail the relevance 
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of these equilibria. Section 8 analyses the robustness of the model to “trembling-hands” 
noise and, finally, section 9 presents the conclusions of this chapter. The reader can replicate 
all the simulation runs reported in this chapter using an applet available at 
http://www.luis.izquierdo.name/papers/rl-book; we have also placed the source code 
used to create every figure in this chapter at the same web address. 

2. Decision problems of strategy 
At the heart of any learning algorithm we always find the problem of choice: learning is 
about making better decisions. At the most elementary level, decision problems can be 
classified according to the factors that may influence the outcome of the problem. Following 
that criterion we can distinguish, in ascending order of generality, the following categories 
(Colman, 1995): 
1. Individual decision-making problems of skill. In this category there is no uncertainty 

involved: a single individual makes a decision, and the outcome of the problem 
depends solely on that decision (e.g. the problem of distributing a fixed production 
generated in various factories over several consumption centres, each with a given 
demand, in order to minimise transportation costs).  

2. Individual decision-making problems under risk. In these problems, the solitary 
decision maker does not know with certainty the consequences of each of the possible 
options available to her, but she can meaningfully attach probabilities to each of the 
outcomes that may occur after each of her possible choices (e.g. the decision of buying a 
lottery ticket or not).  

3. Individual decision-making problems under uncertainty. In this type of problem, as in 
the previous case, even though the consequences of a decision cannot be known with 
certainty at the time of making the decision, the range of possible consequences for each 
decision can be roughly identified in advance. However, unlike in decisions under risk, 
in decisions under uncertainty probabilities cannot be meaningfully attached to each of 
those consequences (e.g. deciding what to order in a new restaurant). 

4. Decision problems of strategy. These problems involve many decision makers, and each 
of them has only partial control over which outcome out of a conceivable set of them 
will actually occur. Decision makers may have the ability to adapt to each other’s 
decisions (e.g. setting prices in an oligopoly with the aim of maximising individual 
profit). 

5. Decision problems under ignorance, or structural ignorance (Gilboa & Schmeidler, 1995 
and 2001). This category is characterised by the fact that it is not possible to 
meaningfully anticipate the set of potential consequences that each of the possible 
choices may have (e.g. deciding whether to give the go-ahead to genetically modified 
crops). 

Problems of skill have been extensively studied in several branches of mathematics. In 
decision-making under risk, compelling solutions have been derived using the theory of 
probability and expected utility theory. Expected utility theory, however, has not been so 
successful in the study of decision-making under uncertainty and strategic decision-making, 
which is the competence of game theory. Finally, understandably so, the formal study of 
decision problems under ignorance has not developed much. 
In this chapter we formally study social interactions that can be meaningfully modelled as 
decision problems of strategy and, as such, using game theory as a framework. Game theory 
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is a branch of mathematics devoted to the formal analysis of decision making in social 
interactions where the outcome depends on the decisions made by potentially several 
individuals. A game is a mathematical abstraction of a social interaction where (Colman, 
1995): 
• there are two or more decision makers, called players; 
• each player has a choice of two or more ways of acting, called actions or (pure) strategies, 

such that the outcome of the interaction depends on the strategy choices of all the 
players; 

• the players have well-defined preferences among the possible outcomes (Hargreaves 
Heap & Varoufakis, 1995). Thus, payoffs reflecting these preferences can be assigned to 
all players for all outcomes. These payoffs are very often numerical (Fig. 1) 

 

Player 2 

 
Player 2 chooses  

LEFT 
Player 2 chooses 

RIGHT 

Player 1 chooses  
UP 3 , 3 0 , 4 

Player 1 

Player 1 chooses 
 DOWN 4 , 0 1 , 1 

 

Fig. 1. Normal form or payoff matrix of a 2-player, 2-strategy game. 

A normal (or strategic form) game can be defined using a function that assigns a payoff to 
each player for every possible combination of actions. For games with only two players 
this function is commonly represented using a matrix (see Fig. 1). The example shown in 
Fig. 1 is a 2-player 2-strategy game: there are two players (player 1 and player 2), each of 
whom must select one out of two possible (pure) strategies. Player 1 can choose Up or 
Down, and player 2 simultaneously decides between Left or Right. The payoffs obtained 
by each player are represented in the corresponding cell of the matrix. Player 1 obtains the 
first payoff in the cell (coloured in red) and player 2 gets the second (coloured in blue). As 
an example, if player 1 selects Down and player 2 selects Left, then player 1 gets a payoff 
of 4 and player 2 obtains a payoff of 0. This chapter deals with 2×2 (2-player 2-strategy) 
games, which can be represented using a matrix like the one shown in Fig. 1. 
Game theory is a useful framework to accurately and formally describe interdependent 
decision-making processes. Furthermore, it also provides a collection of solution concepts 
that narrow the set of expected outcomes in such processes. The most widespread 
solution concept in game theory is the Nash equilibrium, which is a set of strategies, one 
for each player, such that no player, knowing the strategy of the other(s), could improve 
her expected payoff by unilaterally changing her own strategy (e.g. the unique Nash 
equilibrium of the game represented in Fig. 1 is the combination of strategies Down-
Right). The Nash equilibrium has been tremendously influential in the social sciences, 
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especially in economics, partly because it can be interpreted in a great number of 
meaningful and useful ways (Holt & Roth, 2004). Unfortunately, as a prediction tool, the 
concept is formally valid only when analysing games played by rational players with 
common knowledge of rationality1 under the assumption of consistently aligned beliefs 
(Hargreaves Heap & Varoufakis, 1995). Such assumptions are clearly not appropriate in 
many social contexts, where it might not be clear at all that the outcome of the game 
should be a Nash equilibrium. In particular, if players are assumed to adapt their 
decisions using a reinforcement learning algorithm, it is often the case that the final 
outcome of their repeated interaction will not be a Nash equilibrium –as will be shown 
below.  

3. Reinforcement learning in strategic contexts 
In strategic contexts in general, empirical evidence suggests that reinforcement learning is 
most plausible in animals with imperfect reasoning abilities or in human subjects who 
have no information beyond the payoff they receive and may not even be aware of the 
strategic nature of the situation (Duffy, 2005; Camerer, 2003; Bendor et al., 2001a; Roth & 
Erev, 1995; Mookherjee & Sopher, 1994). In the context of experimental game theory with 
human subjects, several authors have used simple models of reinforcement learning to 
successfully explain and predict behaviour in a wide range of games (McAllister, 1991; 
Roth & Erev, 1995; Mookherjee & Sopher, 1994; Mookherjee & Sopher, 1997; Chen & Tang, 
1998; Erev & Roth, 1998; Erev et al., 1999). In general, the various models of reinforcement 
learning that have been applied to strategic contexts tend to differ in the following, 
somewhat interrelated, features: 
• Whether learning slows down or not, i.e. whether the model accounts for the ‘Power 

Law of Practice’ (e.g. Erev & Roth (1998) vs. Börgers & Sarin (1997)). 
• Whether the model allows for avoidance behaviour in addition to approach 

behaviour (e.g. Bendor et al. (2001b) vs. Erev & Roth (1998)). Approach behaviour is 
the tendency to repeat the associated choices after receiving a positive stimulus; 
avoidance behaviour is the tendency to avoid the associated actions after receiving a 
negative stimulus (one that does not satisfy the player). Models that allow for 
negative stimuli tend to define an aspiration level against which achieved payoffs are 
evaluated. This aspiration level may be fixed or vary endogenously (Bendor et al., 
2001a; Bendor et al., 2001b). 

• Whether “forgetting” is considered, i.e. whether recent observations weigh more than 
distant ones (Erev & Roth, 1998; Rustichini, 1999; Beggs, 2005).  

• Whether the model imposes inertia – a positive bias in favour of the most recently 
selected action (Bendor et al., 2001a; Bendor et al., 2001b). 

Laslier et al. (2001) present a more formal comparison of various reinforcement learning 
models. Each of the features above can have important implications for the behaviour of 
the particular model under consideration and for the mathematical methods that are 
adequate for its analysis. For example, when learning slows down, theoretical results from 

                                                 
1 Common knowledge of rationality means that every player assumes that all players are 
instrumentally rational, and that all players are aware of other players’ rationality-related 
assumptions (this produces an infinite recursion of shared assumptions). 
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the theory of stochastic approximation (Benveniste et al., 1990; Kushner & Yin, 1997) and 
from the theory of urn models can often be applied (e.g. Ianni, 2001; Hopkins & Posch, 
2005; Beggs, 2005), whereas if the learning rate is constant, results from the theory of 
distance diminishing models (Norman, 1968; Norman, 1972) tend to be more useful (e.g. 
Börgers & Sarin, 1997; Bendor et al., 2001b; Izquierdo et al., 2007). Similarly, imposing 
inertia facilitates the analysis to a great extent, since it often ensures that a positive 
stimulus will be followed by an increase in the probability weight on the most recently 
selected action at some minimal geometric rate (Bendor et al., 2001b). 
Two of the simplest and most popular models of reinforcement learning in the game 
theory literature are the Erev-Roth (ER) model (Roth & Erev, 1995; Erev & Roth, 1998) 
and the Bush-Mosteller (BM) model (Bush & Mosteller, 1955). Both models are 
stochastic: players’ strategies are probabilities or propensities to take each of their 
possible actions. In the ER model, playing one action always increases the probability of 
playing that action again (i.e. only positive stimulus are considered), and the sensitivity 
of players’ strategies to a new outcome decreases as the game advances (Power Law of 
Practice). On the other hand, the BM model is an aspiration-based reinforcement 
learning model where negative stimuli are possible and learning does not fade with 
time.  
A special case of the BM model where all stimuli are positive was originally considered 
by Cross (1973), and analysed by Börgers & Sarin (1997). In this chapter we characterise 
the dynamics of the BM model in 2×2 games where aspiration levels are fixed, but not 
necessarily below the lowest payoff (i.e. negative stimuli are possible). The dynamics of 
this model were initially explored by Macy & Flache (2002) and Flache & Macy (2002) in 
2×2 social dilemma games using computer simulation, and their work was formalised 
and extended for general 2×2 games by Izquierdo et al. (2007). This chapter follows 
closely the work conducted by Izquierdo et al. (in press), who analysed the BM model 
using a combination of computer simulation experiments and theoretical results. Most 
of the theoretical results used in this chapter derive from Izquierdo et al. (2007).  

4. The BM reinforcement learning algorithm 
The model we analyse here is an elaboration of a conventional Bush-Mosteller (1955) 
stochastic learning model for binary choice. In this model, players decide what action to 
select stochastically: each player’s strategy is defined by the probability of undertaking 
each of the two actions available to them. After every player has selected an action 
according to their probabilities, every player receives the corresponding payoff and 
revises her strategy. The revision of strategies takes place following a reinforcement 
learning approach: players increase their probability of undertaking a certain action if it 
led to payoffs above their aspiration level, and decrease this probability otherwise. 
When learning, players in the BM model use only information concerning their own 
past choices and payoffs, and ignore all the information regarding the payoffs and 
choices of their counterparts.  
More precisely, let I = {1, 2} be the set of players in the game, and let Yi be the pure-
strategy space for each player i ∈ I. For convenience, and without loss of generality, later 
we will call the actions available to each of the players C (for Cooperate) and D (for 
Defect). Thus Yi = {C, D}. Let ui be the payoff functions ui that give player i’s payoff for 
each profile y = (y1, y2) of pure strategies, where yi ∈ Yi is a pure strategy for player i. As 
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an example, ui(C, D) denotes the payoff obtained by player i when player 1 cooperates 
and player 2 defects. Let Y = ×i∈I  Yi be the space of pure-strategy profiles, or possible 
outcomes of the game. Finally, let 

iyip ,  denote player i’s probability of undertaking 

action yi. 
In the BM model, strategy updating takes place in two steps. First, after outcome 

),( nn yy 21=ny  in time-step n, each player i calculates her stimulus si(yn) for the action just 

chosen n
iy  according to the following formula: 
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where Ai is player i’s aspiration level. Hence the stimulus is always a number in the interval 
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where n
yi i

p ,  is player i’s probability of undertaking action yi in time-step n, and li is player i’s 

learning rate (0 < li < 1). Thus, the higher the stimulus magnitude (or the learning rate), the 
larger the change in probability. The updated probability for the action not selected derives 
from the constraint that probabilities must add up to one. Note that the state of the game can 
be fully characterized by a two-dimensional vector p = [ p1 , p2 ], where pi is player i’s 
probability to cooperate (i.e. pi = pi,C). We will refer to such vector p as a strategy profile, or a 
state of the system.  
In the general case, a 2×2 BM model parameterisation requires specifying both players’ 
payoff function ui, aspiration level Ai, and learning rate li. Our analysis is based on the 
theoretical results derived by Izquierdo et al. (2007), which are valid for any 2×2 game, but –
for illustrative purposes– we focus here on systems where two players parameterised in 
exactly the same way (Ai = A and li = l) play a symmetric Prisoner’s Dilemma game. The 
Prisoner’s Dilemma is a two-person game where each player can either cooperate or defect. 
For each player i, the payoff when they both cooperate (ui(C, C) = Ri, for Reward) is greater 
than the payoff obtained when they both defect (ui(D, D) = Pi, for Punishment); when one 
cooperates and the other defects, the cooperator obtains Si (Sucker), whereas the defector 
receives Ti (Temptation). The dilemma comes from the fact that, individually, each player is 
better off defecting given any of her counterpart’s choices (Ti > Ri and Pi > Si; i = 1, 2), but 
they both obtain a greater payoff when they both cooperate than when they both defect (Ri > 
Pi; i = 1, 2). Symmetry implies that Ti = T,  Ri = R,  Pi = P and Si = S. Figure 1 shows an 
example of a symmetric Prisoner’s Dilemma. A certain parameterisation of this type of 
system will be specified using the template [ T , R , P , S | A | l ]2.  
The following notation will be useful: A parameterised model will be denoted S, for System. 
Let Pn(S) be the state of a system S in time-step n. Note that Pn(S) is a random variable and a 
strategy profile p is a particular value of that variable. The sequence of random variables 
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{Pn(S)}n≥0 constitutes a discrete-time Markov process with potentially infinite transient 
states. 

5. Attractors in the dynamics of the system 
Macy & Flache (2002) observed and described two types of attractors that govern the 
dynamics of the BM model: self-reinforcing equilibria (SRE), and self-correcting 
equilibria (SCE). These two concepts are not equilibria in the static sense of the word, 
but strategy profiles which act as attractors that pull the dynamics of the simulation 
towards them. The original concepts of SRE and SCE were later formalised and refined 
by Izquierdo et al. (2007). 
SREs are absorbing states of the system (i.e. states p that cannot be abandoned) where 
both players receive a positive stimulus (Izquierdo et al., 2007). An SRE corresponds to 
a pair of pure strategies (pi is either 0 or 1) such that its certain associated outcome gives 
a strictly positive stimulus to both players (henceforth a mutually satisfactory outcome). 
For example, the strategy profile [ 1 , 1 ] is an SRE if both players’ aspiration levels are 
below their respective Ri = ui(C, C). Escape from an SRE is impossible since no player 
will change her strategy. More importantly, SREs act as attractors: near an SRE, there is 
a high chance that the system will move towards it, because there is a high probability 
that its associated mutually satisfactory outcome will occur, and this brings the system 
even closer to the SRE. The number of SREs in a system is the number of outcomes 
where both players obtain payoffs above their respective aspiration levels. 
The definition of the other type of attractor, namely the SCE, is related to the expected 
motion function of the system. The Expected Motion (EM) of a system S in state p for 
the following iteration is given by a function vector EMS(p) whose components are the 
expected change in the probabilities to cooperate for each player. Mathematically, 
 

)(] )(EM  )(EM [)( 21 pPPppp nn =≡≡ )S()|S(SSS ΔEEM ,  

DDDCCDCC
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where {CC, CD, DC, DD} represent the four possible outcomes that may occur.  
For instance, for a Prisoner’s Dilemma parameterised as [ 4 , 3 , 1 , 0 | 2 | l ]2,  the function 
EM(p) is 

[ ] [ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−
−

−
−
−
−

−−−−=

21

21

21

21

1111

2

2

2

2

1

1

1

1

2121212121

/)(

/)(

/)(

/)(

))(()()()(EM),(EM

p
p
p

p

p
p
p

p

pppppppplpp
 

This Expected Motion function is represented by the arrows shown in figure 2. 
Consider now differential equation (1), which is the continuous time limit approximation of 
the system’s expected motion:   
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Fig. 2. Expected motion of the system in a Prisoner’s Dilemma game parameterised as [ 4 , 3 , 
1 , 0 | 2 | 2−4 ]2, together with a sample simulation run (1000 iterations). The arrows 
represent the expected motion for various states of the system; the numbered balls show the 
state of the system after the indicated number of iterations in the sample run. The 
background is coloured using the norm of the expected motion. For any other learning rate 
the size of the arrows (i.e. the norm of the expected motion) would vary but their direction 
would be preserved.  

Thus, for the Prisoner’s Dilemma parameterised as [ 4 , 3 , 1 , 0 | 2 | l ]2, the associated 
differential equation is 
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Some trajectories of this differential equation are shown in figure 3. The expected motion at 
any point p in the phase plane is a vector tangent to the unique trajectory to which that point 
belongs. Having explained the expected motion of the system and its continuous time limit 
approximation we can now formally define SCEs. 

 
Fig. 3. Trajectories in the phase plane of the differential equation corresponding to the 
Prisoner’s Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 2 | l ]2, together with a sample 
simulation run ( l = 2−4 ). The background is coloured using the norm of the expected 
motion. This system has an SCE at [ 0.37 , 0.37 ].  

An SCE of a system S is an asymptotically stable critical point (Mohler, 1991) of differential 
equation (1) (Izquierdo et al., 2007). Roughly speaking this means that all trajectories in the 
phase plane of Eq. (1) that at some instant are sufficiently close to the SCE will approach the 
SCE as the parameter t (time) approaches infinity and remain close to it at all future times.  
Note that, with these definitions, there could be a state of the system that is an SRE and an 
SCE at the same time. Note also that EMS(SCE) = 0 and EMS(SRE) = 0. In particular, the 
Prisoner’s Dilemma represented in figure 3 exhibits a unique SCE at [ 0.37 , 0.37 ] and a 
unique SRE at [ 1 , 1 ]. 
Let fx(t) denote the solution of differential equation (1) for some initial state x. Figure 4 
shows fx(t) for the Prisoner’s Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 2 | l ]2 for 
different (and symmetric) initial conditions x = [x0 , x0]. For this particular case and settings, 
the two components of fx(t) = [f1,x(t) , f2,x(t)] take the same value at any given t, so the 
representation in figure 4 corresponds to both components of fx(t). Convergence to the SCE 
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at [ 0.37 , 0.37 ] can be clearly observed for every initial condition x, except for x = [1, 1], 
which is the SRE. 

 
Fig. 4. Solutions of differential equation (1) for the Prisoner’s Dilemma game parameterised 
as [ 4 , 3 , 1 , 0 | 2 | l ]2 with different (and symmetric) initial conditions  
x = [x0 , x0]. This system has a unique SCE at [ 0.37 , 0.37 ] and a unique SRE at [ 1 , 1 ].  

The use of expected motion (or mean-field) approximations to understand simulation 
models and to design interesting experiments has already proven to be very useful in the 
literature (e.g. Huet et al., 2007; Galán & Izquierdo, 2005; Edwards et al., 2003; Castellano et 
al., 2000). Note, however, that such approaches are approximations whose validity may be 
constrained to specific conditions: as we can see in Figure 3, simulation runs and trajectories 
will not coincide in general. Later in this chapter we show that trajectories and SCEs are 
especially relevant for the transient dynamics of the system, particularly with small learning 
rates, but, on the other hand, the mean-field approximation can be misleading when 
studying the asymptotic behaviour of the model.  

6. Attractiveness of SREs 
Macy and Flache’s experiments (Macy & Flache, 2002; Flache & Macy, 2002) with the BM 
model showed a puzzling phenomenon. A significant part of their analysis consisted in 
studying, in a Prisoner’s Dilemma in which mutual cooperation was mutually satisfactory 
(i.e. Ai < Ri = ui(C, C)), the proportion of simulation runs that “locked” into mutual 
cooperation. Such ”lock-in rates” were reported to be as high as 1 in some experiments. 
However, starting from an initial state which is not an SRE, the BM model specifications 
guarantee that after any finite number of iterations any outcome has a positive probability of 
occurring (i.e. strictly speaking, lock-in is impossible)2. To investigate this apparent 

                                                 
2 The specification of the model is such that probabilities cannot reach the extreme values of 
0 or 1 starting from any other intermediate value. Therefore if we find a simulation run that 
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contradiction we conducted some qualitative analyses that we present here to familiarise the 
reader with the complex dynamics of this model. Our first qualitative analysis consisted in 
studying the expected dynamics of the model. Figure 5 illustrates the expected motion of a 
system extensively studied by Macy & Flache: the Prisoner’s Dilemma game parameterised 
as [ 4 , 3 , 1 , 0 | 2 | 0.5 ]2. As we saw before, this system features a unique SCE at  
[ 0.37 , 0.37 ] and a unique SRE at [ 1 , 1 ]. Figure 5 also includes the trace of a sample 
simulation run. Note that the only difference between the parameterisation of the system 
shown in figure 2 and that shown in figure 5 is the value of the learning rate. 

 
Fig. 5. Expected motion of the system in a Prisoner’s Dilemma game parameterised as  
[ 4 , 3 , 1 , 0 | 2 | 0.5 ]2, with a sample simulation run.  

Figure 5 shows that the expected movement from any state is towards the SCE, except for 
the only SRE, which is an absorbing state. In particular, near the SRE, where both 
probabilities are high but different from 1, the distribution of possible movements is very 
peculiar: there is a very high chance that both agents will cooperate and consequently move 

                                                                                                                            
has actually ended up in an SRE starting from any other state, we know for sure that such 
simulation run did not follow the specifications of the model (e.g. perhaps because of 
floating-point errors). For a detailed analysis of the effects of floating point errors in 
computer simulations, with applications to this model in particular, see Izquierdo and 
Polhill (2006), Polhill and Izquierdo (2005), Polhill et al. (2006),  Polhill et al. (2005). 
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a small distance towards the SRE, but there is also a positive chance, tiny as it may be, that 
one of the agents will defect, causing both agents to jump away from the SRE towards the 
SCE. The improbable, yet possible, leap away from the SRE is of such magnitude that the 
resulting expected movement is biased towards the SCE despite the unlikelihood of such an 
event actually occurring. The dynamics of the system can be further explored analysing the 
most likely movement from any given state, which is represented in Figure 6.  

 
Fig. 6. Figure showing the most likely movements at some states of the system in a 
Prisoner’s Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 2 | 0.5 ]2, with a sample simulation 
run. The background is coloured using the norm of the most likely movement. 

Figure 6 differs significantly from Figure 5; it shows that the most likely movement in the 
upper-right quadrant of the state space is towards the SRE. Thus, the walk towards the SRE 
is characterised by a fascinating puzzle: on the one hand, the most likely movement leads 
the system towards the SRE, which is even more likely to be approached the closer we get to 
it; on the other hand, the SRE cannot be reached in any finite number of steps and the 
expected movement as defined above is to walk away from it (see figure 5).  
It is also interesting to note in this game that, starting from any mixed (interior) state, both 
players have a positive probability of selecting action D in any future time-step, but there is 
also a positive probability that both players will engage in an infinite chain of the mutually 
satisfactory event CC forever, i.e., that neither player will ever take action D from then 
onwards (see Izquierdo et al., in press).  
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The probability of starting an infinite chain of CC events depends largely on the value of the 
learning rate l. Figure 7 shows the probability of starting an infinite chain of the mutually 
satisfactory outcome CC in a Prisoner’s Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 2  
| l ]2, for different learning rates l, and different initial probabilities to cooperate x0 (the same 
probability for both players). For some values, the probability of immediately starting an 
infinite chain of mutual cooperation can be surprisingly high (e.g. for l = 0.5 and initial 
conditions [ x0 , x0 ] = [ 0.9 , 0.9 ] such probability is approximately 44%).  

 
Fig. 7. Probability of starting an infinite chain of the Mutually Satisfactory (MS) outcome CC 
in a Prisoner’s Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 2 | l ]2. The 5 different 
(coloured) series correspond to different learning rates l. The variable x0, represented in the 
horizontal axis, is the initial probability of cooperating for both players.  

In summary, assuming that aspirations are different from payoffs (see Izquierdo et al., 2007), 
a BM process that starts in an initial state different from an SRE will never reach an SRE in 
finite time, and there is always a positive probability that the process leaves the proximity of 
an SRE. However, if there is some SRE, there is also a positive probability that the system 
will approach it indefinitely (i.e. forever) through an infinite chain of the mutually 
satisfactory outcome associated to the SRE.   

7. Different regimes in the dynamics of the system 
This section illustrates the dynamics of the BM model for different learning rates. Most of 
the theoretical results that we apply and summarise in this section are valid for any 2×2 
game and can be found in Izquierdo et al. (2007). The analysis is presented here in a 
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somewhat qualitative fashion for the sake of clarity and comprehensibility, and illustrates 
the behaviour of the BM model using the Prisoner’s Dilemma shown in figure 1. 
In the general case, the dynamics of the BM model may exhibit three different regimes: 
medium run, long run, and ultralong run. The terminology used here is borrowed from 
Binmore & Samuelson (1993) and Binmore et al. (1995), who reserve the term short run for 
the initial conditions. 
“By the ultralong run, we mean a period of time long enough for the asymptotic distribution to be a 
good description of the behavior of the system. The long run refers to the time span needed for the 
system to reach the vicinity of the first equilibrium in whose neighborhood it will linger for some 
time. We speak of the medium run as the time intermediate between the short run [i.e. initial 
conditions] and the long run, during which the adjustment to equilibrium is occurring.” (Binmore 
et al., 1995, p. 10) 
Binmore et al.’s terminology is particularly useful for our analysis because it is often the case 
in the BM model that the “first equilibrium in whose neighborhood it [the system] will linger for 
some time”, i.e. the long run, is significantly different from the asymptotic dynamics of the 
system. Whether the three different regimes (medium, long, and ultralong run) are clearly 
distinguishable in the BM model strongly depends on the players’ learning rates. For high 
learning rates the system quickly approaches its asymptotic behaviour (the ultralong run) 
and the distinction between the different regimes is not particularly useful. For small 
learning rates, however, the three different regimes can be clearly observed. Since the 
ultralong run is the only regime that is (finally) observed in every system, we start our 
description of the dynamics of the BM model characterising such regime (for details see 
Propositions 2 and 3 in Izquierdo et al., 2007). Assuming players’ aspirations are different 
from their respective payoffs (ui(y) ≠ Ai for all i and y): 
• If players’ aspirations are below their respective maximin3, the BM system converges to 

an SRE with probability 1 (i.e. the set formed by all SREs is asymptotically reached with 
probability 1). If the initial state is completely mixed, then every SRE can be 
asymptotically reached with positive probability. 

• If players’ aspirations are above their respective maximin: 
- if there is any SRE then the BM system converges to an SRE with probability 1. If the 

initial state is completely mixed, then every SRE can be asymptotically reached with 
positive probability.  

- If there are no SREs then the process is ergodic, so the states of the system present an 
asymptotic distribution which is independent of the initial conditions.  

In the context of the Prisoner’s dilemma game described above, this implies that if players’ 
aspirations are above the payoff they receive when they both defect (Ai > ui(D, D) = Pi), 
which is their maximin, then the ultralong run is independent of the initial state. Under such 
conditions, there is an SRE if and only if mutual cooperation is satisfactory for both players 
(i.e. Ai < ui(C, C) = Ri) and, if that is the case, the process converges to certain mutual 
cooperation (i.e. the unique SRE) with probability 1. As an example, note that the ultralong-
run behaviour of the systems shown in figures 2, 3, 5 and 6 is certain mutual cooperation.  

                                                 
3 Maximin is the largest possible payoff players can guarantee themselves in a single-stage 
game using pure strategies. 
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7.1 Learning by large steps (fast adaptation) 
As mentioned above, when learning takes place by large steps, the system quickly reaches 
its ultralong-run behaviour. To explain why this is the case we distinguish between two 
possible classes of systems: 
• In systems where there is at least one SRE, the asymptotic behaviour is quickly 

approached because SREs are powerful attractors (e.g. see figures 5 and 6). The reason 
for this is that, if an SRE exists, the chances of a mutually satisfactory outcome not 
occurring for a long time are low, since players update their strategies to a large extent 
to avoid unsatisfactory outcomes. Whenever a mutually satisfactory outcome occurs, 
players update their strategy so the chances of repeating such a mutually satisfactory 
outcome increase. Since learning rates are high, the movement towards the SRE 
associated with such a mutually satisfactory outcome takes place by large steps, so only 
a few coordinated moves are sufficient to approach the SRE so much that escape from 
its neighbourhood becomes very unlikely. In other words, with fast learning the system 
quickly approaches an SRE, and is likely to keep approaching that SRE forever (this is 
the system’s ultralong-run behaviour). As an example, consider figure 7 again: starting 
from any initial probability to cooperate x0, the occurrence of a mutually satisfactory 
outcome CC would increase both players’ probability to cooperate (the updated 
probability can be seen as the following period’s x0), which in turn would increase the 
probability of never defecting (i.e. the probability of starting an infinite chain of CC). 
Thus, if learning rates are large, a few CC events are enough to take the state of the 
system into areas where the probability of never defecting again is large. 

• In the absence of SREs, the fact that any outcome is unsatisfactory for at least one of the 
players4 and the fact that strategy changes are substantial, together imply that at least 
one player will switch between actions very frequently –i.e. the system will indefinitely 
move rapidly and widely around a large area of the state space. 

7.2 Learning by small steps (slow adaptation) 
The behaviour of the BM process with low learning rates is characterised by the following 
features (Izquierdo et al., 2007; Proposition 1):   
• For low enough learning rates, the BM process with initial state x tends to follow the 

trajectory fx(t) in the phase plane of Eq. (1), i.e. the trajectory that corresponds to f(0) = x 
(e.g. see figure 3).  

• For low enough learning rates l, the BM process in time-step n tends to be concentrated 
around a particular point of the mentioned trajectory: the point fx(n·l) (e.g. see figure 4). 

• If trajectories get close to an SCE (as t increases), then, for low learning rates, the BM 
process will tend to approach and linger around the SCE; the lower the learning rate, 
the greater the number of periods that the process will tend to stay around the SCE.  

• Eventually the system will approach its asymptotic behaviour, which –as explained 
above– is best characterised by the SREs of the system. 

When learning takes place by small steps the transient regimes (i.e. the medium and the 
long run) can be clearly observed, and these transient dynamics can be substantially 
different from the ultralong-run behaviour of the system. For sufficiently small learning 

                                                 
4 Recall that each player’s aspiration level is assumed to be different from every payoff the 
player may receive. 
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rates and number of iterations n not too large (n·l bounded), the medium-run dynamics of 
the system are best characterised by the trajectories in the phase plane of Eq. (1), which can 
follow paths substantially apart from the end-states of the system (see figure 8, where the 
end-state is [1 , 1]). Under such conditions, the expected state of the system after n iterations 
can be estimated by substituting the value n·l in the trajectory that commences at the initial 
conditions (see figure 4). The lower the learning rates, the better the estimate, i.e. the more 
tightly clustered the dynamics will be around the corresponding trajectory in the phase 
plane (see figure 8).  
When trajectories finish in an SCE, the system will approach the SCE and spend a significant 
amount of time in its neighbourhood if learning rates are low enough and the number of 
iterations n is large enough (and finite)5. This latter regime is the long run. The fact that 
trajectories are good approximations for the transient dynamics of the system for slow 
learning shows the importance of SCEs –points that ”attract” trajectories within their 
neighbourhood– as attractors of the actual dynamics of the system. This is particularly so 
when, as in most 2×2 games, there are very few asymptotically stable critical points and they 
have very wide domains of attraction.  

 
Fig. 8. Three sample runs of a system parameterised as [ 4 , 3 , 1 , 0 | 2 | l ]2 for different 
values of n and l. The product n·l is the same for the three simulations; therefore, for low 
values of l, the state of the system at the end of the simulations tends to concentrate around 
the same point.  

Remember, however, that the system will eventually approach its asymptotic behaviour, 
which in the systems shown in figures 2, 3, 4, 5, 6, 7 and 8 is certain mutual cooperation. 
Having said that, as Binmore et al., (1995) point out, approaching the asymptotic behaviour 
may require an extraordinarily long time, much longer than is often meant by long run, 
hence the term ultralong run. 
To illustrate how learning rates affect the speed of convergence to asymptotic behaviour, 
consider once again the Prisoner’s Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 2 | l ]2, a 
system extensively studied by Macy & Flache (2002). The evolution of the probability to 
cooperate with initial state [ 0.5 , 0.5 ] (with these settings the probability is identical for both 

                                                 
5 Excluded here is the trivial case where the initial state is an SRE.  
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players) is represented in the rows of figure 9 for different learning rates l. The top row 
shows the evolution for l = 0.5, and the bottom row shows the evolution for l = 2-7.  
For l = 0.5, after only 29 = 512 iterations, the probability that both players will be almost 
certain to cooperate is very close to 1, and it remains so thereafter. For l = 2-4 and lower 
learning rates, however, the distribution is still clustered around the SCE even after 221 = 
2097152 iterations. With low learning rates, the chain of events that is required to escape 
from the neighbourhood of the SCE is extremely unlikely, and therefore this long run 
regime seems to persist indefinitely. However, given sufficient time, such a chain of 
coordinated moves will occur, and the system will eventually reach its ultralong-run regime, 
i.e. almost-certain mutual cooperation. The convergence of the processes to the appropriate 
point in the trajectory fx(n·l) as l → 0 and n·l is kept bounded can be appreciated following 
the grey arrows (which join histograms for which n·l is constant). 
 

 
Fig. 9. Histograms representing the probability of cooperating for one player (both players’ 
probabilities are identical) after n iterations for different learning rates l in a Prisoner’s 
Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 2 | l ]2, each calculated over 1,000 simulation 
runs. The initial probability for both players is 0.5. The grey arrows join histograms for 
which n·l is constant. 

8. Trembling hands process 
To study the robustness of the previous asymptotic results we consider an extension of the 
BM model where players suffer from ‘trembling hands’ (Selten, 1975): after having decided 
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which action to undertake, each player i may select the wrong action with some probability 
εi > 0 in each iteration. This noisy feature generates a new stochastic process, namely the 
noisy process Nn, which can also be fully characterized by a 2-dimensional vector prop = 
[prop1 , prop2] of propensities (rather than probabilities) to cooperate. Player i’s actual 
probability to cooperate is now (1 – εi) · propi + εi · (1 – propi), and the profile of propensities 
prop evolves after any particular outcome following the rules given in section 4. Izquierdo et 
al. (2007) prove that the noisy process Nn is ergodic in any 2×2 game6. Ergodicity implies 
that the state of the process presents an asymptotic probability distribution that does not 
depend on the initial state.  
The noisy process has no absorbing states (i.e. SREs) except in the trivial case where both 
players find one of their actions always satisfactory and the other action always 
unsatisfactory – thus, for example, in the Prisoner’s Dilemma the inclusion of noise 
precludes the system from convergence to a single state. However, even though noisy 
processes have no SREs in general, the SREs of the associated unperturbed process (SREUPs, 
which correspond to mutually satisfactory outcomes) do still act as attractors whose 
attractive power depends on the magnitude of the noise: ceteris paribus the lower the noise 
the higher the long run chances of finding the system in the neighbourhood of an SREUP 
(see Figure 10). This is so because in the proximity of an SREUP, if εi are low enough, the 
SREUP’s associated mutually satisfactory outcome will probably occur, and this brings the 
system even closer to the SREUP. The dynamics of the noisy system will generally be 
governed also by the other type of attractor, the SCE (see figure 10). 

 

 
Fig. 10. Histograms representing the propensity to cooperate for one player (both players’ 
propensities are identical) after 1,000,000 iterations (when the distribution is stable) for 
different levels of noise (εi = ε) in a Prisoner’s Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 
2 | 0.25 ]2. Each histogram has been calculated over 1,000 simulation runs.  

Figures 11 and 12, which correspond to a Prisoner’s Dilemma game parameterised as [ 4 , 3 , 
1 , 0 | 2 | l ]2, show that the presence of noise can greatly damage the stability of the 
(unique) SREUP associated to the event CC. Note that the inclusion of noise implies that the 
probability of an infinite chain of the mutually satisfactory event CC becomes zero. 

                                                 
6 We exclude here the meaningless case where the payoffs for some player are all the same 
and equal to her aspiration (Ti = Ri = Pi = Si = Ai for some i).    
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The systems represented on the left-hand side of figure 11, corresponding to a learning rate  
l = 0.5, show a tendency to be quickly attracted to the state [ 1 , 1 ], but the presence of noise 
breaks the chains of mutually satisfactory CC events from time to time (see the series on the 
bottom-left corner); unilateral defections make the system escape from the area of the 
SREUP before going back towards it again and again. The systems represented on the right-
hand side of figure 11, corresponding to a lower learning rate (l = 0.25) than those on the 
left, show a tendency to be lingering around the SCE for longer. In these cases, when a 
unilateral defection breaks a chain of mutually satisfactory events CC and the system leaves 
the proximity of the state [ 1 , 1 ], it usually takes a large number of periods to go back into 
that area again.  

 
 

 
Fig. 11. Representative time series of player 1’s propensity to cooperate over time for the 
Prisoner’s Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 2 |0.5 ]2 (left) and [4 , 3 , 1 , 0 | 2 
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|0.25 ]2 (right), with initial conditions [ x0 , x0 ] = [ 0.5 , 0.5 ], both without noise (top) and 
with noise level εi = 10-3 (bottom). 

Figure 12 shows that a greater level of noise implies higher destabilisation of the SREUP. 
This is so because, even in the proximity of the SREUP, the long chains of reinforced CC 
events needed to stabilise the SREUP become highly unlikely when there are high levels of 
noise, and unilateral defections (whose probability increases with noise in the proximity of 
the SREUP) break the stability of the SREUP. 

 
Fig. 12. Evolution of the average probability / propensity to cooperate of one of the players 
in a Prisoner’s Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 2 | 0. 5 ]2 with initial state        
[ 0.5, 0.5 ], for different levels of noise (εi = ε). Each series has been calculated averaging over 
100,000 simulation runs. The standard error of the represented averages is lower than 3·10-3 
in every case.  

8.1 Stochastic stability 
Importantly, not all the SREs of the unperturbed process are equally robust to noise. 
Consider, for instance, the system [ 4 , 3 , 1 , 0 | 0.5 | 0. 5 ]2, which has two SRES: [ 1 , 1 ] and  
[ 0 , 0 ]. Using the results outlined in section 7 we know that the set formed by the two SREs 
is asymptotically reached with probability 1; the probability of the process converging to 
one particular SRE depends on the initial state; and if the initial state is completely mixed, 
then the process may converge to either SRE. Simulations of this process show that, almost 
in every case, the system quickly approaches one of the SREs and then remains in its close 
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vicinity. Looking at the line labelled “ε = 0” in figure 13 we can see that this system with 
initial state [ 0.9 , 0.9 ] has a probability of converging to its SRE at [ 1 , 1 ] approximately 
equal to 0.7, and a probability of converging to its SRE at [ 0 , 0 ] approximately equal to 0.3.  
However, the inclusion of (even tiny levels of) noise may alter the dynamics of the system 
dramatically. In general, for low enough levels of “trembling hands” noise we find an 
ultralong-run (invariant) distribution concentrated on neighbourhoods of SREUPs. The 
lower the noise, the higher the concentration around SREUPs. If there are several SREUPs, 
the invariant distribution may concentrate on some of these SREUPs much more than on 
others. In the limit as the noise goes to zero, it is often the case that only some of the SREUPs 
remain points of concentration. These are called stochastically stable equilibria (Foster & 
Young, 1990; Young, 1993; Ellison, 2000). As an example, consider the simulation results 
shown in figure 13, which clearly suggest that the SRE at [ 0 , 0 ] is the only stochastically 
stable equilibrium even though the unperturbed process converges to the other SRE more 
frequently with initial conditions [ 0.9 , 0.9 ]. Note that whether an equilibrium is 
stochastically stable or not is independent on the initial conditions.  
 

 
Fig. 13. Evolution of the average probability / propensity to cooperate of one of the players 
in a Prisoner’s Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 0.5 | 0. 5 ]2 with initial state     
[ 0.9 , 0.9 ], for different levels of noise (εi = ε). Each series has been calculated averaging over 
10,000 simulation runs. The inset graph is a magnification of the first 500 iterations. The 
standard error of the represented averages is lower than 0.01 in every case.  
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Intuitively, note that in the system shown in figure 13, in the proximities of the SRE at  
[ 1 , 1 ], one single (possibly mistaken) defection is enough to lead the system away from it. 
On the other hand, near the SRE at [ 0 , 0 ] one single (possibly mistaken) cooperation will 
make the system approach this SRE at [ 0 , 0 ] even more closely. Only a coordinated mutual 
cooperation (which is highly unlikely near the SRE at [ 0 , 0 ]) will make the system move 
away from this SRE. This makes the SRE at [ 0 , 0 ] much more robust to occasional mistakes 
made by the players when selecting their strategies than the SRE at [ 1, 1 ], as illustrated in 
figures 14 and 15.   
 
 

 
 

 

Fig. 14. One representative run of the system parameterised as [ 4 , 3 , 1 , 0 | 0.5 | 0. 5 ]2 with 
initial state [ 0.9 , 0.9 ], and  noise εi = ε = 0.1. This figure shows the evolution of the system 
in the phase plane of propensities to cooperate, while figure 15 below shows the evolution of 
player 1’s propensity to cooperate over time for the same simulation run.  
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Fig. 15. Time series of player 1’s propensity to cooperate over time for the same simulation 
run displayed in figure 14.  

9. Conclusions 
This chapter has characterised the behaviour of the Bush-Mosteller (Bush & Mosteller, 1955) 
aspiration-based reinforcement learning model in 2x2 games. The dynamics of this process 
depend mainly on three features: 
• The speed of learning. 
• The existence of self-reinforcing equilibria (SREs). SREs are states which are particularly 

relevant for the ultralong-run or asymptotic behaviour of the process. 
• The existence of self-correcting equilibria (SCEs). SCEs are states which are particularly 

relevant for the transient behaviour of the process with low learning rates. 
With high learning rates, the model approaches its asymptotic behaviour fairly quickly. If 
there are SREs, such asymptotic dynamics are concentrated on the SREs of the system. With 
low learning rates, two transient distinct regimes (medium run and long run) can usually be 
distinguished before the system approaches its asymptotic regime. Such transient dynamics 
are strongly linked to the solutions of the continuous time limit approximation of the 
system’s expected motion. 
The inclusion of small quantities of noise in the model can change its dynamics quite 
dramatically. Some states of the system that are asymptotically reached with high 
probability in the unperturbed model (i.e. some SREs) can effectively lose all their 
attractiveness when players make occasional mistakes in selecting their actions. A field for 
further research is the analytical identification of the asymptotic equilibria of the 
unperturbed process that are robust to small trembles (i.e. the set of stochastically stable 
equilibria).   
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