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1 Supplementary Tables 

 
Table S1. Estimated reference values for the cooperative regime, CR

CCx̂  

α µ = 0.05 µ = 0.01 µ = 0.001 

10 39.7 (6.8)% 59.9 (5.8)% 65.5 (5.6)% 

11 45.1 (6.2)% 65.0 (5.3)% 69.2 (5.6)% 

12 50.0 (5.4)% 68.0 (5.1)% 73.2 (5.3)% 

13 53.5 (5.4)% 71.0 (4.7)% 75.6 (4.9)% 

14 56.6 (4.6)% 73.4 (4.5)% 78.4 (5.4)% 

15 59.0 (4.6)% 75.1 (4.2)% 79.7 (4.3)% 

20 66.2 (3.9)% 81.5 (3.7)% 85.0 (3.8)% 

25 71.1 (3.6)% 84.7 (3.5)% 89.1 (3.4)% 

30 73.2 (3.3)% 87.1 (2.9)% 91.1 (3.1)% 

40 76.4 (3.0)% 89.4 (2.5)% 93.4 (2.6)% 

50 78.7 (2.7)% 90.8 (2.3)% 95.4 (2.7)% 

100 82.8 (2.4)% 93.8 (1.7)% 97.6 (1.7)% 

 

Estimated values for the average fraction of CC outcomes CR
CCx̂  that characterizes the cooperative regime. 

To calculate CR
CCx̂  we simulate the ergodic process until we obtain a series of 105 consecutive 

observations such that at least 99% of them are within the band defined by |ˆ| CR
CCCC xx −  ≤ γ , where  

CR
CCx̂  is the average value of xCC in the series, provided that CR

CCx̂  > 0.3. For α > 15 we took γ  = 0.1; for α 

≤ 15, γ  = 0.2. For the particular case α = 10, given the lesser persistence of the cooperative regime, we 

required 25 000 consecutive observations. Table S2 shows that the value thus computed for each 

parameter configuration effectively anchors the level of cooperation observed in the cooperative regime 

(i.e. whenever the simulation run displays a sizable level of cooperation). The values in brackets show the 

standard deviation of xCC in the series. Parameterization: N = 1000, T = 4, R = 3, P = 1, S = 0. 



Table S2. Expected Lifespan, Non-cooperative Regime (NCR) and 

Cooperative Regime (CR) 

α CR
CCx̂ (%) 

NCR (%): 

xDD ≥ 0.8  

CR (%): 

| xCC - CR
CCx̂ | ≤ 0.1  

Within regimes 

(%) 

CR to 

NCR 

NCR to 

CR 

5 - 100.0 (0.1) 0.0 (0.0) 100.0 0 0 

10 39.7% 99.9 (0.5) 0.0 (0.0) 99.9 0 0 

11 45.1% 99.1 (7.9) 0.6 (7.1) 99.7 0 1 

12 50.0% 97.0 (15.7) 2.4 (14.4) 99.4 0 5 

13 53.5% 90.4 (28.1) 8.4 (26.4) 98.8 0 20 

14 56.6% 77.3 (40.5) 20.9 (38.7) 98.2 0 42 

15 59.0% 64.2 (45.9) 33.4 (44.5) 97.6 0 80 

20 66.2% 8.4 (24.6) 89.5 (25.5) 97.9 0 93 

25 71.1% 0.3 (4.0) 98.8 (4.4) 99.1 0 7 

30 73.2% 0.0 (0.0) 99.6 (0.5) 99.6 0 0 

40 76.4% 0.0 (0.0) 99.9 (0.3) 99.9 0 0 

50 78.7% 0.0 (0.0) 99.9 (0.3) 99.9 0 0 

100 82.7% 0.0 (0.0) 100.0 (0.0) 100.0 0 0 

 

Statistics in each row compiled over 103 simulation runs. Every run measured between periods 3·103 and 

104. α: expected lifespan. CR
CCx̂ : Reference level of cooperation for the cooperative regime (Table S1). 

NCR: visitation rate in the non-cooperative regime (fraction of periods with xDD ≥ 0.8). CR: visitation rate 

in the cooperative regime (fraction of periods with |xCC - CR
CCx̂ | ≤  0.1). The values in brackets show the 

standard deviation of the averages across runs. CR to NCR / NCR to CR: number of transitions from one 

regime to the other. Simulations start from random initial conditions. Parameterization: N = 1000, µ = 

0.05, T = 4, R = 3, P = 1, S = 0. 



Table S3. Main strategies in the non-cooperative regime 

α D_D_L D_D_D D_L_L D_C_L D_C_D D_L_D 

5 40.7 (1.6) % 27.2 (1.3) % 6.8 (0.7) % 6.7 (0.7) % 6.6 (0.7) % 4.9 (0.4) % 

10 49.3 (1.7) % 23.0 (1.3) % 5.6 (0.8) % 5.7 (0.8) % 5.7 (0.8) % 3.6 (0.4) % 

11 50.1 (1.7) % 22.4 (1.3) % 5.5 (0.8) % 5.6 (0.8) % 5.7 (0.8) % 3.5 (0.4) % 

12 50.7 (1.9) % 21.9 (1.4) % 5.5 (0.8) % 5.5 (0.8) % 5.6 (0.8) % 3.4 (0.4) % 

13 51.4 (1.7) % 21.5 (1.4) % 5.3 (0.8) % 5.4 (0.8) % 5.7 (0.9) % 3.3 (0.4) % 

14 51.9 (2.1) % 21.1 (1.6) % 5.3 (0.9) % 5.3 (0.9) % 5.7 (1.3) % 3.3 (0.4) % 

15 52.5 (2.2) % 20.6 (1.7) % 5.2 (1.0) % 5.2 (0.9) % 5.7 (1.2) % 3.2 (0.5) % 

20 54.0 (3.3) % 19.1 (3.0) % 5.1 (1.7) % 5.2 (1.5) % 5.6 (2.1) % 2.9 (0.7) % 

25 54.9 (3.4) % 17.4 (2.4) % 4.9 (3.0) % 5.5 (1.5) % 5.7 (1.3) % 3.0 (0.7) % 

 

Average values for the fraction of the main strategies in the non-cooperative regime between periods 

3·103 and 104 in 1000 simulated runs of the process, with random initial conditions. The values in brackets 

show the standard deviation of the averages across runs. Parameterization: N = 1000, µ = 0.05, T = 4, R = 

3, P = 1, S = 0. 

 



Table S4.  Main strategies in the cooperative regime 

α C_C_L C_C_D D_D_L D_L_L D_C_L 

11 49.2 (2.9)% 5.9 (2.6)% 14.5 (1.5)% 8.1 (1.4)% 4.5 (0.3)% 

12 54.2 (1.8)% 5.4 (2.2)% 12.7 (1.1)% 6.9 (0.8)% 4.1 (0.7)% 

13 56.9 (6.2)% 5.3 (6.3)% 11.5 (1.5)% 6.3 (1.2)% 3.8 (0.7)% 

14 59.3 (3.8)% 5.1 (3.4)% 10.5 (1.2)% 5.8 (1.1)% 3.7 (0.6)% 

15 61.0 (5.8)% 5.2 (5.8)% 9.9 (1.2)% 5.3 (1.0)% 3.5 (0.6)% 

20 66.5 (3.8)% 5.2 (3.5)% 7.6 (0.9)% 4.2 (0.6)% 2.9 (0.4)% 

25 70.1 (1.4)% 4.7 (1.3)% 6.5 (0.7)% 3.6 (0.6)% 2.6 (0.4)% 

30 72.0 (1.4)% 4.8 (1.2)% 5.8 (0.6)% 3.1 (0.5)% 2.4 (0.4)% 

40 74.4 (1.7)% 4.9 (1.5)% 5.0 (0.6)% 2.7 (0.4)% 2.1 (0.3)% 

50 75.7 (1.9)% 5.0 (1.7)% 4.6 (0.6)% 2.3 (0.4)% 1.9 (0.3)% 

100 77.5 (3.5)% 6.5 (3.3)% 3.7 (0.6)% 1.7 (0.4)% 1.5 (0.3)% 

 
Average values for the fraction of the main strategies in the cooperative regime between periods 3·103 and 

104 in 1000 simulated runs of the process, with random initial conditions.  The values in brackets show 

the standard deviation of the averages across runs. Parameterization: N = 1000, µ = 0.05, T = 4, R = 3, P = 

1, S = 0. 

 



2 Supplementary Figures 
 

N = 200

N = 100

N = 400

 

Fig. S1. Evolution of the percentage of CC outcomes (xCC) for 18 different runs, each run starting with the 

whole population using the same strategy (one run for each of the 18 strategies). Each panel corresponds 

to a different population size: N = 100, N = 200 and N= 400; α = 25, µ = 0.01, T = 4, R = 3, P = 1, S = 0. 

The horizontal line at xCC = 85.6% shows the stable level of cooperation in the mean-field approximation. 

 

 



3. Supplementary Equations 
 
3.1 Mean-field equations for the reduced system 

Let xCC be the share of pairwise interactions in which both parties play C, xDD the share 

of such interactions in which both parties play D, and xCD the share in which one of the 

individuals plays C and the other D. In the reduced system, which includes the strategy 

C_C_L and the three strategies D_X_L, the mean-field equations for xCC , xDD and xCD 

in large populations (N → ∞) with mutation rate µ are: 
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and      
2
CD

DDD
xTxP +=π   

are the payoffs associated with C-players and D-players respectively. 

It is easily verified that the mean-field equations leave the sum of interaction shares 

constant and all interaction shares non-negative: 
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Note: The reduced system considers the combination of the strategy C_C_L with the 

three strategies D_X_L. In terms of outcomes (xCC , xDD and xCD), there are also other 

subsets of strategies (e.g. C_C_D with D_L_L) which correspond to the same Markov 

process (adapting the mutation term to the number of strategies) and which, 

consequently, present the same mean-field approximation and the same critical points. 

3.2 Critical points for the particular case T = 4, R = 3, P = 1, S = 0, µ = 0. 

Let 2)1( βδ −=  be the effective discount factor for cooperation. In our numerical 

example (T = 4, R = 3, P = 1, S = 0) the mean field with µ = 0 admits two interior 

stationary states for all δ > 3/4. In these, the share of cooperative interactions is 

 
δδ 4
31

2
11* −±−=CCx  

The stationary point corresponding to the positive root is asymptotically stable (while 

the other is not) and the share of cooperative interactions in that point can be easily seen 

to converge to one as δ→1. 

 



3.3 Critical points for the general case, with µ = 0 

At the end of this section we prove that, for β > 0, the system  

0,0,0 === CDDDCC xxx         [1] 

is equivalent to the alternative system  
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where 2)1( βδ −= . The third equation in [2] shows that the only critical points in the 

boundary of the unit simplex are 1=CCx  and 1=DDx , and that any other possible 

critical point must be interior. Now we look for the interior critical points ( 0>CDx ).  

From the first 2 equations of [2], one can obtain 
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and 
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Expanding this last equation,  
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or, given that 0>CDx , 
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Defining the normalized payoffs for reward (r) and for punishment (p) as 
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we arrive at the system of three equations: 

0)
1

1(2)1(2 =
−
−

−++− CDDDCC xprxpxr
δ

  

)1(42 δ−= CCDDCD xxx  

1=++ CDDDCC xxx  

with 0 < CDDDCC xxx ,, < 1 and 0 < p < r < 1.  

If ( )2
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system for xCC is  
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where the solution in which the root has a positive sign corresponds to the (unique) 

stable cooperative equilibrium. 

Proof of the equivalence of the systems of equations [1] and [2] 
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This equation is just the condition that the inflow of new C-players 
DC

C

ππ
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β
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the outflow of dead C-players Cxβ  must be equal. Equivalently, for 

2
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x

xx +=  we obtain the second equation of [2]. 

The third equation of [2] is obtained from [1] using the relations 
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The first 2 equations of [2] imply 
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and considering the third equation in [2], we have [1].  

 



4. Supplementary notes 
 
4.1 Replication 

All the simulations reported in this paper can be run using the available applets. 

Random initial conditions for the population are created by letting each individual take 

one of the 18 possible strategies with equal probability. 

4.2 Costs of leaving 

It is conceivable that, by penalizing strategies that “punish” defectors through 

dissociation, the existence of some additional cost when breaking a relationship could 

harm conditional dissociation and the establishment of a cooperative regime. However, 

computational studies in related frameworks (Vanberg & Congleton 1992; Aktipis 

2004) show that cooperation can thrive with a costly exit option. This is also the case in 

our framework. 

A natural way to model a cost of leaving is to assume that individuals do not 

immediately find a partner after splitting-up, but may spend some periods searching, 

during which they receive some low outside payoff instead. Consider the following 

extension of the conditional dissociation model: at the beginning of every time-step, 

every single (non-paired) player is selected to be paired with probability φ , and those 

who remain single receive an outside payoff A (if the number of players selected to be 

paired is odd, one of those selected players goes back to the pool of singles). 

As a representative example, consider the following parameterization: N = 1000, µ = 

0.05, T = 4, R = 3, P = 1, S = 0, A = 0, φ  = 0.5. Comparing simulations of this model 



with those obtained for the original formulation with immediate re-matching (φ  = 1), 

uncertain re-matching leads to a shorter minimum expected lifespan for the cooperative 

regime to appear (i.e., a lower δMin). And, for a given expected lifespan, it also presents 

an average level of cooperation in the cooperative regime (measured by the number of 

CC outcomes divided by the total number of outcomes in a given period) that is higher 

than in the original model. In order to understand this effect, note that the cost of a 

broken relationship falls predominantly upon those individuals who separate more 

often, and, in a cooperative regime supported by conditional dissociation, the proportion 

of separations is much higher among individuals who defect (for, typically, they leave 

or are abandoned after each interaction) than among individuals who cooperate (most of 

whom remain together in cooperating pairs, free from the additional costs of leaving).  

5. Individual-based model with variable population size 
 

In this section we consider an alternative model where, in every period, each 

individual breeds one offspring with probability β, and may die with the same 

probability β (both events being stochastically independent). Newborns cannot die in 

the time-step they are born, and they independently copy the decision rules of the 

individuals that were alive at the beginning of the current time-step, i.e. newborns 

cannot be copied. The intra-period sequence of events of this model is summarised in 

Fig. S2.  



 

Fig. S2. Sequence of events within each time period. The “Remaining Pairs” and “Singles” at the 

end of a period are identical to the “Existing Pairs” and “Singles” in the next period. 

Naturally, the population size Nt  in this alternative model is variable. To be 

precise, both the number of births and the number of deaths in time-step t are binomial 

random variables with expected value β·Nt , where Nt denotes the population size at the 

beginning of time-step t. Thus, for large populations, the population growth in time-step 

t, i.e. (Nt+1 - Nt), is well approximated by a normal distribution with expected value 0. At 

those iterations of the model where Nt is odd, one randomly chosen individual remains 

unpaired and gets the same payoff as in the previous period.  

5.1 Simulation results 

The comparison between figures S3 and S4 below and figures 5 and 6 in the paper 

shows that the qualitative results obtained with the model where the population size is 

variable are identical to those obtained with the model where the population size is 

constant. 



 

 

Fig. S3. Fraction of periods spent in the cooperative and in the non-cooperative regimes as a 

function of the expected life α in the model with variable population size. The values in each column 

are compiled over 103 simulation runs where the population has not extinguished at time-step 104. 

Every run measured between periods 3·103 and 104, with random initial conditions. 

Parameterization: N1 = 1000, µ = 0.05, T = 4, R = 3, P = 1, S = 0. 

 

 

Fig. S4. Composition of strategies in the cooperative regime computed in Fig. S3. 

Figures S3 and S4 can be replicated using the applet provided. 

 

5.2 Mean-field approximation 

The mean-field equations for the model where the population size is variable are 

identical to the mean-field equations for the model where the population size is 

constant. This statement rests on the following two observations:  



a. In the dynamics of the model with variable population, the effect of one single 

unmatched individual, if his payoff is bounded, becomes negligible in large 

populations.  

b. Both the number of births and the number of deaths as a fraction of the 

population size converge in probability to β as N →∞.   

 


