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Abstract. This paper studies the structural robustness of evolutionary models of 
cooperation, i.e. their sensitivity to small structural changes. To do this, we fo-
cus on the Prisoner’s Dilemma game and on the set of stochastic strategies that 
are conditioned on the last action of the player’s opponent. Strategies such as 
Tit-For-Tat (TFT) and Always-Defect (ALLD) are particular and classical cases 
within this framework; here we study their potential appearance and their evolu-
tionary robustness, as well as the impact of small changes in the model parame-
ters on their evolutionary dynamics. Our results show that the type of strategies 
that are likely to emerge and be sustained in evolutionary contexts is strongly 
dependent on assumptions that traditionally have been thought to be unimpor-
tant or secondary (number of players, mutation-rate, population structure…). 
We find that ALLD-like strategies tend to be the most successful in most envi-
ronments, and we also discuss the conditions that favor the appearance of TFT-
like strategies and cooperation.  

Keywords: Evolution of Cooperation; Evolutionary Game Theory; Iterated 
Prisoner's Dilemma; Tit for Tat; Agent-based Modeling. 

1   Introduction 

The evolutionary emergence and stability of cooperation is a problem of fundamental 
importance that has been studied for decades in a wide range of disciplines. The value 
of understanding such a question is clear: in the social and biological sciences, the 
emergence of cooperation is at the heart of subjects as diverse as the first appearance 
of life, the ecological functioning of countless environmental interactions, the effi-
cient use of natural resources, the development of modern societies, and the sustain-
able stewardship of our planet. From an engineering point of view, the problem of 
understanding how cooperation can emerge and be promoted is crucial for the design 
of efficient decentralized systems where collective action can lead to a common bene-
fit but individual units may (purposely or not) undermine the collective good for their 
own advantage. 

At the most elementary level, the problem of cooperation can be formalized using 
the symmetric Prisoner’s Dilemma (PD), a two-person game where each player can 
either cooperate or defect. The payoff that players gain when they both cooperate (R) 
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is greater than the payoff obtained when they both defect (P); a single cooperator  
obtains S, whereas a single defector receives T. The essence of the problem of coop-
eration is captured by the fact that both players prefer any outcome in which the op-
ponent cooperates to any outcome in which the opponent defects (T > R > P > S), but 
they both have clear incentives to defect. Specifically, both the temptation to cheat  
(T > R) and the fear of being cheated (S < P) put cooperation at risk. 

Thus, the fundamental challenge of understanding the evolutionary emergence and 
stability of cooperation can be enlightened, at the most elementary level, by identify-
ing the conditions under which a finite number of units that interact by playing the PD 
may cooperate. These units might be able to adapt their individual behavior (i.e. 
learn), or the population of units as a whole may adapt through an evolutionary proc-
ess (or both). While formalizing the problem of cooperation in this way significantly 
decreases its complexity (and generality), the question still remains largely unspeci-
fied: how many units form the population? How do they interact? What strategies can 
they use? What is the value of each of the payoffs in the game? and, crucially, what 
are the processes governing the dynamics of the system? 

It is well known since the early years of the study of the evolution of cooperation 
that, in general, the question of how – if at all – cooperation emerges in a particular 
system significantly depends on all of the above defining characteristics of the system 
(see e.g. [1], [2], [3] and [4]). Having recognized this, the method that scientists have 
naturally followed to advance our formal understanding of the emergence of coopera-
tion has been to study those systems that are tractable with the tools of analysis avail-
able at the time. Until not long ago, such tools have derived almost exclusively from 
the realm of mathematics, and they have given rise to mainstream evolutionary game 
theory [5]. Mainstream (analytical) Evolutionary Game Theory (EGT) has proven to 
be tremendously useful, but its use has had important implications in terms of the 
classes of systems that have been investigated, and in terms of the kind of conclusions 
that have been drawn on such systems.  

In terms of classes of systems, in order to achieve mathematical tractability, EGT 
has traditionally analyzed idealized systems, i.e. systems that cannot exist in the real 
world (e.g. a system where the population is assumed to be infinite). Typically, main-
stream EGT has also imposed various other assumptions that simplify the analysis, 
but which do not necessarily make the system ideal in our terminology (i.e. impossi-
ble to exist in the real world). Some examples of such assumptions are: random  
encounters, infinitely repeated interactions, finite sets of deterministic strategies, pro-
portional fitness rule, and arbitrarily small homogenous invasions. Applying main-
stream EGT to non-idealized systems can be very problematic because the validity on 
non-idealized systems of conclusions drawn from extremely similar idealized systems 
is not as straightforward as one may think. As an example, Beggs [6] demonstrates 
that when analyzing some types of evolutionary idealized systems, results can be 
widely different depending on the order in which certain limits are taken: if one takes 
the limit as population size becomes (infinitely) large and then considers the limit as 
the force of selection becomes strong, then one obtains different results from those at-
tained if the order of the limits is inverted. Thus, Beggs [6] warns that “care is there-
fore needed in the application of these approximations”. 

The need to achieve mathematical tractability has also influenced the kind of conclu-
sions obtained in mainstream EGT. Thus, mainstream EGT has focused on analyzing 
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the stability of incumbent strategies to arbitrarily small mutant invasions, but has not 
paid much attention to the overall dynamics of the system in terms of e.g. the size of the 
basins of attraction of different evolutionary stable strategies, or the average fraction of 
time that the system spends in each of them. 

Nowadays it has just become possible to start addressing the limitations of main-
stream EGT outlined above. The current availability of vast amounts of computing 
power through the use of computer grids is enabling us to conduct formal and rigor-
ous analyses of the dynamics of non-idealized systems through an adequate explora-
tion of their sensitivity both to basic parameters and to their structural assumptions. 
These analyses can complement previous studies by characterizing dynamic aspects 
of (idealized and non-idealized) systems beyond the limits of mathematical tractabil-
ity. It is this approach that we follow in this paper. 

The specific aim of this paper is to study the structural robustness of evolutionary 
models of cooperation. To do this, we analyze simple non-idealized models of coop-
eration and we study their sensitivity to small structural changes (e.g. slight modifica-
tions in the way players are paired to play the PD, or in how a generation is created 
from the preceding one). The impact of the assumptions that we study here has not 
been, to our knowledge, investigated in a formal and consistent way before arguably 
because a) it is only recently that we can thoroughly analyze non-idealized models, 
and/or because b) the effect of such assumptions has been considered unimportant. 
Thus, in broader terms, our results also shed light on the robustness of the conclusions 
obtained from EGT as we know it nowadays – i.e. can these conclusions be readily 
applied to non-idealized systems? 

Following this introduction, in section 2 we review some previous work on the ro-
bustness of evolutionary models of cooperation. Section 3 describes our modeling 
framework: EVO-2x2. In section 4 we provide and discuss the main results obtained, 
and finally, in section 5, we present our conclusions. 

2   Previous Work 

In this section we report previous work that has shed light on the robustness of evolu-
tionary models of cooperation. We find it useful to place these models in a fuzzy 
spectrum that goes from mathematically tractable models with strict assumptions that 
limit their applicability (e.g. work on idealized systems), to models with the opposite 
characteristics. The rationale behind the construction and use of such a spectrum is 
that when creating a formal model to investigate a certain question (e.g. the evolution 
of cooperation), there is often a trade-off between the applicability of the model (de-
termined by how constraining the assumptions embedded in the model are) and the 
mathematical tractability of its analysis (i.e. how deeply the functioning of the model 
can be understood given a certain set of available tools of analysis).  

The former end is mostly populated by models designed to ensure its mathematical 
tractability. Near this end we find papers that study the impact of some structural as-
sumptions, whilst still keeping others which ensure the model remains tractable and 
which, unfortunately, also tend to make the model retain its idealized nature. Gotts et 
al. [4] review many of such papers in sections 2 and 4. Some of these investigations 
have considered finite vs. infinite populations [7, 8, 9], different pairing settings or 
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population structures (see section 6 in [4]), deterministic vs. stochastic strategies [10, 
11], and finite vs. infinitely repeated games [12]. While illuminating, the applicability 
of most of these studies is somewhat limited since, as mentioned before, the models 
investigated there tend to retain their idealized nature. 

Near the opposite end, we find models that tend to be slightly more applicable (e.g. 
they consider non-idealized systems), but they are often mathematically intractable. It 
is from this end that we depart in this paper. To our knowledge, the first relevant 
study with these characteristics was conducted by Axelrod [13]. Axelrod had previ-
ously organized two open tournaments in which the participant strategies played an 
iterated PD in a round robin fashion [1]. Tit for Tat (TFT) was the winner in both 
tournaments, and also in an ecological analysis that Axelrod [1] conducted after the 
tournaments. Encouraged by these results, Axelrod [13] investigated the generality of 
TFT’s success by studying the evolution of a randomly generated population of 
strategies (as opposed to the arguably arbitrary set of strategies submitted to the tour-
nament) using a particular genetic algorithm. The set of possible strategies in this 
study consisted of all deterministic strategies able to consider the 3 preceding actions 
by both players. From this study, Axelrod [13] concluded that in the long-term, “re-
ciprocators […] spread in the population, resulting in more and more cooperation and 
greater and greater effectiveness”. However, the generality of Axelrod’s study [13] is 
doubtful for two reasons: (1) he used a very specific set of assumptions, the impact of 
which was not tested, and (2) even if we constrain the scope of his conclusions to his 
particular model, the results should not be trusted since Axelrod only conducted 10 
runs of 50 generations each. As a matter of fact, Binmore [14, 15] cites unpublished 
work by Probst [16] that contradicts Axelrod’s results.  

In a more comprehensive fashion, Linster [17] studied the evolution of strategies 
that can be implemented by two-state Moore machines in the infinitely repeated PD. 
He found a strategy called GRIM remarkably successful. In particular, GRIM was 
significantly more successful than TFT. GRIM always cooperates until the opponent 
defects, in which case it switches to defection forever. Linster [17] attributed the suc-
cess of GRIM over TFT to the fact that GRIM is able to exploit poor strategies while 
TFT is not. Linster’s investigation was truly remarkable at its time, but technology 
has advanced considerably since then, and we are now in a position to expand his 
work significantly by conducting parameter explorations beyond what was possible 
before. As an example, note that Linster [17] could only consider deterministic strate-
gies and one specific value for the mutation rate; furthermore, in the cases he studied 
where the dynamics were not deterministic, there is no guarantee that his simulations 
had reached their asymptotic behavior. 

In the following section we describe the relevant aspects of our modeling frame-
work, which is aimed at facilitating a more consistent and systematic exploration of 
the impact of competing assumptions in non-idealized evolutionary models of  
cooperation.  

3   Our Modeling Framework: EVO-2x2 

EVO-2x2 was developed using NetLogo [18]. In EVO-2x2 there is a population of 
num-players players. Events occur in discrete time-steps, which can be interpreted as 
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successive generations. At the beginning of every generation every player’s payoff 
(which denotes the player’s fitness) is set to zero. Then, every player is paired with 
another player to play a 2-player match, according to one of two possible pairing al-
gorithms (pairing-settings): 

• random pairings: Pairs are made at random, without any bias.  
• children together: Players are paired preferentially with their siblings (and at ran-

dom among siblings). Once all the possible pairs between siblings have been 
made, the rest of the players are paired at random. This procedure was imple-
mented because it seems plausible in many biological contexts that individuals  
belonging to the same family tend to interact more often among them than with 
individuals from other families. 

Every player plays one single match per generation. Each match consists of a num-
ber of sequential rounds (rounds-per-match). In each round, the two members of the 
pair play a symmetric PD once. The action selected by each of the players determines 
the magnitude of the payoff that each of them receives in that round (CC-payoff, CD-
payoff, DC-payoff, DD-payoff). The total payoff that a player obtains in a match is 
the sum of the payoffs obtained in each of the rounds. Players differ in the way they 
play the match, i.e. they generally have different strategies. The strategy of a player is 
determined by three numbers between 0 and 1:  

• PC: Probability to cooperate in the first round.  
• PC/C: Probability to cooperate in round n (n > 1) given that the other player has 

cooperated in round (n – 1).  
• PC/D: Probability to cooperate in round n (n > 1) given that the other player has 

defected in round (n – 1).  

The set of possible values that PC, PC/C or PC/D can take depends on the value 
of the binary variable infinite-strategies?, which is either on or off. If on (default op-
tion), the set of possible values is any (floating-point) number between 0 and 1. If 
off, only num-strategies (≥ 2) values are allowed for each of the variables PC, PC/C, 
and PC/D; the permitted values are evenly distributed between 0 and 1 (both in-
cluded). Once every player has played one – and only one – match, two evolutionary 
processes come into play to replace the old generation with a brand new one: natural 
selection (selection-mechanism) and mutation (mutation-rate). Successful players 
(those with higher payoffs) tend to have more offspring than unsuccessful ones. This 
marks the end of a generation and the beginning of a new one, and thus the cycle is 
completed. In this paper we only consider a selection-mechanism called roulette 
wheel, which involves conducting num-players replications that form the new gen-
eration. In each replication, players from the old generation are given a probability of 
being chosen to be replicated that is proportional to their total payoff. A mutant is a 
player whose strategy (the 3-tuple formed by PC, PC/C, and PC/D) has been deter-
mined at random. The probability that any newly created player is a mutant is  
mutation-rate.  
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4   Results and Discussion 

We use EVO-2x2 to conduct a systematic exploration of the parameter space for the 
PD, in order to assess the impact of various competing assumptions. All the simula-
tions reported in this paper have been run on computer grids. 

Defining a state of the system as a certain particularization of every player’s strat-
egy, it can be shown that all simulations in EVO-2x2 with positive mutation rates can 
be formulated as irreducible positive recurrent and aperiodic (sometimes called er-
godic) discrete-time Markov chains. Thus, there is a unique long-run distribution over 
the possible states of the system, i.e. initial conditions are immaterial in the long-run 
[19, Theorem 3.15]. Although calculating such (dynamic) distributions analytically is 
unfeasible, we can estimate them using the computer simulations. The problem is to 
make sure that a certain simulation has run for long enough, so the limiting distribu-
tion has been satisfactorily approximated. To make sure that this is the case, for each 
possible combination of parameters considered, we ran 8 different simulations starting 
from widely different initial conditions. These are the 8 possible initial populations 
where every individual has the same pure strategy (the 8 corners of the strategy 
space). Then, every simulation run is conducted for 1,000,000 generations. Thus, in 
those cases where the 8 distributions are similar, we have great confidence that they 
are showing a distribution close to the limiting distribution.  

A useful summary of the results produced in a simulation run is the accumulated 
frequency of different types of strategies throughout the course of a simulation run. 
This is something that can be plotted in a 3D contour plot, and in complementary 2D 
density plots, as shown in figure 1. 

 

Fig. 1. Influence of the mutation rate on the dynamics of the system. TFT measures the average 
time that strategies with PC ≥ (13/15), PC/C ≥ (13/15) and PC/D ≤ (2/15) were observed. 
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Here we report several cases where it can be clearly seen that some of the assump-
tions that are sometimes thought to have little significance (e.g. mutation-rate, number 
of players, or population structure) can have a major impact on the type of strategies 
that emerge and are sustained throughout generations. The payoffs used in all simula-
tions are: CC-payoff = 3; CD-payoff = 0; DC-payoff = 5; DD-payoff = 1. 

The two distributions in figure 1 only differ in the value of the mutation rate used 
(0.01 on the left, and 0.05 on the right). The distribution on the left shows the evolu-
tionary emergence and (dynamic) permanence of strategies similar to TFT (PC ≈ 1, 
PC/C ≈ 1, and PC/D ≈ 0). Such strategies do not appear for slightly higher mutation 
rates (distribution on the right). The other parameter values used were num-players = 
100; pairing-settings = random pairings; rounds-per-match = 50. 

The two distributions in figure 2 only differ in the number of players in the popula-
tion (100 on the left, and 10 on the right). The distribution on the left shows the evolu-
tionary emergence and (dynamic) permanence of strategies similar to TFT, whereas 
such strategies do not appear in smaller populations. The other parameter values are: 
pairing-settings = random pairings; rounds-per-match = 50; mutation-rate = 0.01. 

   

Fig. 2. Influence of the number of players in the population. TFT measures the average time 
that strategies with PC ≥ (13/15), PC/C ≥ (13/15) and PC/D ≤ (2/15) were observed. 

The two distributions in figure 3 only differ in the algorithm used to form the pairs 
of players (random pairings on the left, and children together on the right). On the 
left, strategies tend to be strongly uncooperative, while the distribution on the right is 
concentrated around strategies similar to TFT. The other parameter values used were: 
num-players = 100; rounds-per-match = 5; mutation-rate = 0.05. 

The two distributions in figure 4 only differ in the set of possible values that PC, 
PC/C or PC/D can take. For the distribution on the left the set of possible values is 
any (floating-point) number between 0 and 1, and the strategies are mainly uncoop-
erative, similar to ALLD (PC ≈ 0, PC/C ≈ 0, and PC/D ≈ 0). For the distribution on 
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the right, the set of possible values is only {0, 1}, and the distribution is concentrated 
in TFT. The other parameter values used were: num-players = 100; mutation-rate = 
0.05; rounds-per-match = 10; pairing-settings = random pairings. 

 

Fig. 3. Influence of different pairing mechanisms. TFT measures the average time that strate-
gies with PC ≥ (10/15), PC/C ≥ (10/15) and PC/D ≤ (5/15) were observed; ALLD measures the 
average time that strategies with PC ≤ (5/15), PC/C ≤ (5/15) and PC/D ≤ (5/15) were observed. 

 

Fig. 4. Stochastic (mixed) strategies vs. deterministic (pure) strategies: influence in the system 
dynamics. TFT measures the average time that strategies with PC ≥ (10/15), PC/C ≥ (10/15) 
and PC/D ≤ (5/15) were observed; ALLD measures the average time that strategies with  
PC ≤ (5/15), PC/C ≤ (5/15) and PC/D ≤ (5/15) were observed.  
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In figures 5 and 6 we show the effect of gradually increasing the set of possible 
values for PC, PC/C and PC/D (i.e. num-strategies). Figure 5 shows the (average) 
number of each possible outcome of the game (CC, CD/DC or DD) in observed series 
of 106 matches (this number of matches is selected so the effect of changing the initial 
state is negligible, i.e. results are close to the stationary limiting distribution).  
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Fig. 5. Influence in the distribution of outcomes (CC, CD/DC or DD) of augmenting the set of 
possible values for PC, PC/C and PC/D  

Figure 6 shows the average values of PC, PC/C and PC/D observed in the same se-
ries. Augmenting the set of possible values for PC, PC/C and PC/D undermines co-
operation and favors the emergence of ALLD-like strategies. The other parameter 
values used were: num-players = 100; mutation-rate = 0.01; rounds-per-match = 10; 
pairing-settings = random pairings. 
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Fig. 6. Influence of augmenting the set of possible values for PC, PC/C and PC/D in the aver-
age values of these variables in the population  

5   Conclusions 

In this paper we have presented, for the Prisoner’s Dilemma, several results on the 
evolutionary dynamics of stochastic strategies that are conditioned on the last action 
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of the player’s opponent. Popular strategies such as TFT and ALLD are particular 
(extreme) cases within this framework, and we have studied the possible appearance 
and evolutionary robustness of such strategies. Our results show that: 

• The type of strategies that are likely to emerge and be sustained in evolutionary 
contexts is strongly dependent on assumptions that traditionally have been thought 
to be unimportant or secondary (value of mutation-rate, number of players, popula-
tion structure…) 

• Strategies similar to ALLD tend to be the most successful in most environments. 
• Strategies similar to TFT tend to spread best with the following factors: in large 

populations, where individuals with similar strategies tend to interact more fre-
quently, when only deterministic strategies are allowed, with low mutation rates, 
and when interactions consist of many rounds. 
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