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SUMMARY 
 

The use of subspace algorithms for the identification of non-stationary cointegrated stochastic 
systems is a promising technique that is currently under discussion. A revision of the literature 
provides two distinct algorithms: State Space Aoki Time Series (SSATS) identification algorithm 
(Aoki and Havenner 1991) and the Adapted Canonical Correlations Analysis (ACCA) of Bauer and 
Wagner (2002). Aoki’s method is intuitively appealing, but lacks statistical foundation. In contrast, 
ACCA has a sound statistical basis, though intuition is somewhat lost. Both algorithms are 
revisited and commented. The study of the underlying ideas and properties of both previous 
algorithms leads us to propose a new method for subspace identification of non-stationary 
cointegrated stochastic systems, trying to combine the best features of each one. This new method 
provides a state space trend-cycle representation of a cointegrated system. Some preliminary 
simulation results are summarised, comparing these subspace methods with Johansen’s maximum 
likelihood approach. 
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1. Introduction.  
 
This article deals with stochastic system identification based on the “state space” formulation. 
System identification builds mathematical models of dynamical systems based on observed 
data from the system (Ljung 1999). A state space formulation constitutes one of the possible 
general mathematical ways to get a parametric representation of a linear, stochastic, 
multivariate system.  
 
It is the object of this article to study the capabilities of the state-space formulation for the 
analysis of cointegrated systems, trying to throw some light as to whether it can be an 
alternative or a complement to the (most widely used) Johansen procedure. We will consider 
only discrete time and time invariant (constant parameters) systems. The two main previously 
proposed subspace algorithms for cointegrated systems will be revisited, and a new original 
algorithm will be proposed in this article. Some results from a separate comparative 
simulation study will be summarised. 
 
It must be noted that there are different (though equivalent) ways to formulate a state space 
model, and throughout this article we will use the “innovations” state space form (Hannan and 
Deistler 1988), which is : 
 

zt+1 =  A zt + K et  State transition equation   [1] 
  yt    =  C zt +  et  Observations equation   [2] 
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where zt is a (n × 1) state vector, yt is a (m × 1) observations vector, et is a (m × 1) white noise 
vector with E(et) = 0 and E(et e’t) = R (where e’t stands for the transpose of et) and A, K, C are 
constant matrices of coherent dimensions. The matrices {A, K, C, R} are known as system 
matrices.  
 
Other popular options for the formulation and analysis of linear stochastic systems are transfer 
functions and VARMA formulations. If the model for a system is known, these different 
general formulations are equivalent, in the sense that we can interchangeably represent a same 
model (same object) using any of them. However, if the model is unknown, different 
identification methods and algorithms are associated with each different mathematical 
formulation, leading to (possibly) different models for the same data.  
 
For the analysis of cointegrated systems, the most widely used method is probably Johansen’s 
maximum likelihood method, based on a VAR formulation (Johansen 1988). We consider 
alternative approaches based on the state space formulation, given that this formulation offers 
some very interesting features for model interpretation (trend-cycle), estimation and 
specification.  
 
There are several possibilities to carry out an analysis of a system based on a state space 
formulation. To start with, the best known and most extended econometric application of the 
state space formulation is quasi maximum likelihood estimation of parameters via Kalman 
filtering. This approach is based upon the following facts:  
 

 Using the (unknown, parametric) state space system matrices, Kalman filtering 
recursively provides the (parametric) conditional mean and conditional variance of 
observations in a sample.  

 
 Assuming gaussian innovations, conditional mean and variance are enough to calculate 

the (parametric) likelihood function of a sample.  
 
 If we know the (parametric) likelihood function, we can search for the parameter 

values that maximize this function, obtaining maximum likelihood estimations of the 
system parameters.  

 
This is a very general approach that can be considered a “universal method” to obtain quasi 
maximum likelihood estimations in linear systems. The main practical drawback of this 
method is that the likelihood function is usually highly non linear, and its maximum must be 
searched by numerical methods, which involves difficulties due to local optima and 
convergence issues. 
 
Focusing on cointegrated systems, we can see that this Kalman filtering approach is a possible 
way to search for maximum likelihood parameter estimations. However, Johansen’s method 
provides maximum likelihood estimations in a single step (from the residuals of several 
auxiliary autoregressions), and it does not require numerical optimization of a non linear 
function. This is the reason why, a priori, we consider that this Kalman filter - maximum 
likelihood  approach could hardly compete with Johansen method (the only possible drawback 
of Johansen method in this comparison is that it requires a VAR formulation –approximation- 
of the generating process).  After these considerations, we turn our view to other state space 
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based analysis tools, and, in particular, to subspace methods. 
 
The article is structured as follows: in section 2 we describe the main underlying ideas and 
characteristics of subspace methods. Section 3 and section 4 provide a revision of the SSATS 
and ACCA algorithms, which, up to now, constitute the two most relevant subspace 
algorithms that have been proposed for the identification of cointegrated systems. In section 5 
we present our original CCA2 algorithm. Section 6 summarises some results from a separate 
comparative simulation study. Finally, section 7 presents conclusions and future research. 
 
2. Subspace algorithms. 
 
“Subspace algorithms” make up one of the options to carry out a state-space-based system 
identification. The use of subspace algorithms for system identification in a stationary 
framework has been widely explored since the 80´s. In the non stationary framework, Aoki’s 
SSATS (Aoki 1997) is considered, up to our knowledge, the first case of subspace algorithm 
specially designed to cope with non stationarities, and the only one to get some practical 
relevance until the recently proposed Adapted Canonical Correlation Analysis (ACCA) 
algorithm of Bauer and Wagner (2002). Both algorithms will be revisited in this article. 
  
It must be said that the family of subspace methods present a number of algorithm options and 
variants that give rise to several different specific algorithms. Bauer and Ljung (2002) 
distinguish between Larimore type and MOESP type subspace algorithms. We shall focus on 
Larimore type algorithms, and, specially, on the Canonical Correlations Analysis (CCA) 
algorithm, which presents some optimal properties for stochastic identification (Larimore 
1996, Bauer and Ljung 2002). 
 
There are two main ideas exploited by Larimore type subspace algorithms: 
 
1.- A sequence of (Kalman filter like) states can be estimated directly from observations.  
 
2.- All system matrices can be estimated via least squares (provided that observations and a 

sequence of states are known). 
 
We shall dwell briefly upon both ideas.  
 
2.1 Estimation of a sequence of states 
 
Estimation of a sequence of states from observations is possible by combining two facts: 
 

a) Consider the set yt
f , made up by observation yt plus next f-1 future observations  

 
yt

f = [yt’, yt+1’, ..., yt+f -1’]’ 
 

and the set yt-1
p of p past observations 

 
yt-1

p = [yt-1’, yt-2’, ..., yt-p ’]’ 
  

An expected value of yt
f based on yt-1

p can be calculated by the linear projection 
theorem: the orthogonal projection (yt

f / yt-1
p ) of f future observations (yt

f ) into p past 
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observations (yt-1
p ) is  

 
yt

f / yt-1
p  =  E(yt

f  yt-1
p’) [E(yt-1

p yt-1
p’)]-1 yt-1

p 
 
where the projection matrix E(yt

f  yt-1
p’) [E(yt-1

p yt-1
p’)]-1 can be, for stationary 

processes, consistently estimated directly from data. 
 
b) Let ŷt|t-1 be the expected value of yt based on past values (up to time t-1). Consider a 

system that evolves according to state space equations [1] and [2]. At time t, the 
expected value (ŷt|t-1

 f) of yt
f conditional on past observations is the product of an 

(extended) observability matrix by the expected value (žt|t-1) of the state vector at time 
t conditional on past observations. This fact can be seen by recursive substitution in 
the state space system equations: 

 
ŷt|t-1     =         C  ž t|t-1 
ŷt+1|t-1    =         C A  ž t|t-1 

     … 
ŷt+f-1|t-1   = C Af-1  ž t|t-1 

 
which can be expressed as  

ŷt|t-1
 f = Of ž t|t-1 

 
where Of is the (extended) observability matrix Of = [C’ (C A)’ … (C Af-1)’ ]’.   

 
Combining the two previous facts, subspace algorithms decompose a matrix of estimated 
orthogonal projections (predictions) into the product of an (estimated) observability matrix 
plus an (estimated) “sequence of states” matrix. This decomposition is flexible in a certain 
way (it is not unique, and it fixes the coordinate basis for the states) and it can be made by 
means of a singular value decomposition (SVD) of the matrix of orthogonal projections.  
 
Basically, subspace methods find (one of the possible combinations of) an observability 
matrix plus a sequence of states which provide almost the same predictions as those based on 
a linear data projection. 
 
Importantly, the order of the matrix of projections is the order of the system (the state vector 
dimension in a minimal state space representation), and it can be estimated by a SVD of the 
projection matrix, thus allowing for a data-based system specification. 
 
2.2 Estimation of the system matrices 
 
The second main idea of subspace algorithms is that, if a sequence of states is known, all the 
system matrices {A, K, C, R} can be estimated by least squares. Note that, if yt and zt are 
known, the formula  
 

yt    =  C zt +  et 
 
allows for a least squares estimation of C, et and R, and then, the formula  

 
zt+1 =  A zt + K et 



 
allows for an estimation of A and K.  
 
 
2.3 Subspace methods versus “classical” identification methods 
 
One of the main advantages of subspace methods when compared with other “classical” 
identification methods, like Prediction Error Methods (Ljung, 1999), is that subspace 
algorithms are not iterative, so they are usually faster and do not present convergence 
problems (Van Oberschee and De Moor 1996). Final estimators can be compactly written in 
an elegant way as a function of a matrix decomposition of orthogonal projections obtained 
from original data (De Cock and De Moor, 2003). 
 
The differences between Larimore type subspace algorithms and the Kalman filter – 
maximum likelihood approach to system identification can be seen in figure 1. 
 
 

System Observations (yt) 
Unknown system parameters (θ) 

State Space formulation (θ) 
Parametric Kalman filter (θ) 

Parametric likelihood function (θ) 
Numerical optimization of θ 

Estimated system 
matrices  

Estimated sequence of 
states (Kalman) 

Estimated sequence of states 
(~Kalman) 

Estimated observability matrix 

Estimated system 
matrices (= estimated θ) 

Orthogonal Data Projections 
SV Decomposition 

Kalman 
Filter

Least 
Squares 

 
Figure 1: Two different approaches to system identification. Subspace methods (left) estimate a sequence of 

states first, directly from observed data, and then obtain estimates of the system matrices. Other classical 
identification procedures, like the one based on Kalman filtering plus maximum likelihood, estimate system 

parameters first, and estimates of the states may then be obtained, from system matrices plus observations. The 
figure is based on Van Oberschee and De Moor (1996). 

  
3. State Space Aoki Time Series (SSATS) algorithm. 
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Aoki’s SSATS method (Aoki 1997) was developed in 1983 as an instrumental variables 



method, not as a subspace algorithm. However, several estimation alternatives have been 
developed since the initial algorithm (Vargas 1999), and, in fact, Aoki’s method can be seen 
as a particular case of the subspace methods family, the one known as Principal Components 
(PC) (Van Oberschee and De Moor, 1996).  
 
A very interesting idea proposed by Aoki is a two-stage application of his method to cope 
with non-stationary systems. The observed vector of m temporal series yt is decomposed into 
a combination of long term (low frequency) components τt (trends) plus m stationary cycles 
y*t. Aoki proposes a first stage to estimate the trend model: 
 

yt  =  Cτ τt   + y*t 
τt+1  =  Aτ τt   + Kτ y*t 

 
The residuals y*t from this first stage would not be white noise, but stationary cycles. A state 
space model for the cycles can be estimated in a second stage: 

y*t   =  Cη ηt   +  et 
ηt+1  =  Aη ηt   + Kη et 

 
Both models can then be stacked into a single one : 
 

τt+1 
ηt+1 

Aτ    BτCη 
0        Aη 

τt  
ηt 

Bτ 
Bη = +  [3]  et 

  

yt  = τt  
ηt 
 

+ etCτ     Cη  [4]

 
 
Note that, in this representation, trends are affected by the state of cycles, and cycles evolve 
independently of trends.  
 
The expected advantage of this two-stage procedure is that short-term dynamics can be 
estimated without the effects caused by long term movements, which are removed in the first 
stage. If there are non stationarities, they should be captured in the trend model, and 
cointegration appears if the number of non stationary (common) trends is less than the number 
of non stationary observed series. Cointegration relations can be estimated because they are 
determined by the null space of Cτ . 
 
In Aoki and Havenner (1991), a number of criteria are developed to estimate the orders of the 
trend (number of common trends) and cycle models. However, the method relies on heuristic 
arguments and it has been criticized for lack of statistical foundation. Vargas (2000) provides 
statistical tests for the number of common trends based on this procedure.  
  
4. Adapted Canonical Correlations Analysis (ACCA) algorithm. 
 
Bauer and Wagner (2002) prove that, for cointegrated processes, the standard CCA algorithm 
allows for consistent estimation of the cointegrating subspace, but consistent estimation of all 
other system parameters is not guaranteed. They propose a modification of the standard CCA 
algorithm in order to achieve consistent estimates of all system parameters of (co)integrated 
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processes of order 1. This modification is called adapted CCA or ACCA, and it chooses a 
canonical form in which the state transition matrix is block-diagonal, separating the dynamics 
into independent stationary (cycle) and non-stationary (trend) components. If desired, unit 
roots can be imposed for the trends, obtaining a representation of the form: 
 

τt+1 
ηt+1 

Ic        0 
0        Aη 

τt  
ηt 

Bτ 
Bη = +  et 

 

yt  = τt  
ηt + etCτ     Cη 

 
Note that the dynamic matrix for the states is block diagonal, so, in this representation, trends 
are random walks and evolve independently of the cycles. Again, cointegration involves a 
number of common trends inferior to the number of observed I(1) series. 
 
Consistent subspace estimation of all parameters of a cointegrated system is an important 
achievement, because it is a theoretical advantage over Johansen’s method: for underlying 
VARMA cointegrated processes, Johansen’s method applied with a fixed autoregressive lag 
length provides consistent estimates of the cointegrating subspace, but not consistent 
estimates of all system parameters (Wagner 1999). Apart from consistent estimation of all 
system parameters, Bauer and Wagner (2002) propose also several tests for the cointegrating 
rank, and a consistent estimation criterion for the system order. First results indicate that the 
proposed tests perform at least comparable to the Johansen method.  
 
5. Two-stage Canonical Correlation Analysis (CCA2) 
 
Following Aoki’s ideas, we suggest a two-stage method for non stationary systems, where 
each stage will use the standard CCA algorithm. As stated previously, two different algorithms 
within the subspace family are the principal components (PC) algorithm and the Canonical 
Correlations Analysis (CCA) algorithm. While Aoki’s SSATS is equivalent to a principal 
components subspace algorithm (Aoki 1997, Van Oberschee and De Moor 1996), the CCA 
algorithm presents optimal properties for stochastic identification, being better suited than the 
other subspace methods (Bauer and Ljung 2002).  
 
So, for non stationary cointegrated systems, we take from Aoki the intuitive idea of removing 
low frequency trends in a first stage before modelling high frequency cycles, but we propose 
using the CCA subspace algorithm instead of Aoki’s method for each of the modelling stages. 
We call this method “two-stage CCA” or CCA2. 
 
Stacking the cycle and trend models would provide a representation like [3] and [4], in which 
trends are affected by the states of cycles. However, a representation with a different 
interpretation and a different relation between trends and cycles can be obtained if the state 
basis is rotated (similarity transformation). 
 
The dimension of the state vector in the first stage (trend model) must equal the number of 
estimated common trends. Aoki suggested limiting the dimension of yt-1

p (taking p =1) for this 
first stage, but that would not provide good results in our simulations. Instead, in order to 
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estimate the number of common trends we propose using a subspace based test (see Bauer and 
Wagner 2002 for a discussion of several possibilities) or any other classical test (like the 
Johansen test). To estimate the order of the second stage (cycle model) we selected the BA(n) 
criterion of Bauer and Wagner (2003).   
 
 
6. Preliminary results. 
 
We present some preliminary results from a simulation study that compares the performance 
of different identification methods for cointegrated systems: Johansen, CCA, ACCA and 
CCA2. The complete settings and results of these experiments make up a different study 
which is now being completed, and we just present here some general preliminary 
conclusions.    
 
We considered VARMA (or state space) data generating processes (DGPs) for series of 
dimensions two and three, with one or two cointegrating relations. The DGPs included no 
deterministic trends, but constant terms in the cointegrating relations were considered (see 
Hamilton 1994).  For Johansen method, the order of a VAR representation of the model was 
calculated by the Schwarz criterion (BIC). For subspace methods, the order of the system was 
calculated by the BA(n) criterion of Bauer and Wagner (2003). 
  
For the models obtained by each different identification method, we compared the quality of 
estimation of the cointegrating subspace (see Gonzalo 1994 for related work) and the 
predictive performance. The cointegrating subspace was estimated assuming the right number 
of common trends, and quality of estimation was measured by the angle between real and 
estimated subspaces*. The predictive performance was evaluated for different prediction 
horizons by the mean square prediction error (in prediction samples different from the 
identification samples). Main results are: 
 

 No identification method (Johansen, subspaces) is uniformly better than the other. The 
relative performance depends greatly on the specification and the parameter values of 
the DGP. For instance, consider the following DGP (DGP1): 
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* The angle between subspaces does not depend on any arbitrary normalization. For 2 and 3 dimensional series it 
has a clear interpretation, being an angle between two vectors in the Euclidean space, or an angle between the 
director vectors of two planes. The concept can be generalized to several variables (see Van Oberschee and De 
Moor 1996, and the function “subspace” of matlab).  
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where the observed series (yt) are composed by a common trend (τt) plus two 
stationary ARMA (1,1) processes.  
 
Note that the parameter σ amplifies the trend component in relation to the cycle 
component, and the cointegration relation is determined by the first column vector of 
the matrix C, which determines the way in which the trend enters each observed 
series. The value δ includes a constant term in the cointegration relation. We studied 
the values β = (1,-3),  σ = (.2, .5), a = (0, 1), φ1 = (.5, .9), φ2 = (.5, .9),  θ = (.5, .9), δ = 
50, plus independent noise (e1t, e2t) distributions ( N(0, 1), t5 , U(-2,2)), and sample 
sizes T = (50, 100, 300).  
 
For most of the considered combinations of values of the parameters of DGP1, the 
predictive performance of models identified by subspace methods was superior to 
models identified by the Johansen procedure. However, for most 3 dimensional DGPs 
explored, the Johansen procedure outperformed subspace methods (but not uniformly, 
i.e., not for all combinations of system parameters).  

 
 Although we have found some DGPs for which subspace methods perform better than 

Johansen’s, according to our practical results we cannot defend subspace methods as 
being the substitute for the Johansen method (in the case of underlying VARMA 
generating processes), but they stand as a good complement or as an alternative. 

 
 In general, CCA2 produced models with worse predictive performance than those 

provided by the standard CCA algorithm, or by ACCA. Though the 2-stage idea of 
CCA2 was intuitively appealing, it seems that estimating non stationary states first and 
stationary states later, and stacking both models, produces worse results than jointly 
estimating stationary and non stationary states. 

 
 ACCA offers theoretical consistency estimation advantages over the standard CCA. 

However, in our experiments with different sample sizes (50, 100, 300), there were 
differences between ACCA and CCA models (both in prediction performance and in 
quality of estimation of the cointegrating subspace), but no clear advantages of any of 
the methods over the other. For instance, for DGP1, CCA models performed better (in 
predictive power and quality of estimation of the cointegrating subspace) than ACCA 
models, but it was the other way round in many other cases. 

 
7. Conclusions and future research. 
 
The two different subspace algorithms found in literature for non-stationary system 
identification (SSATS and ACCA) have been revisited and commented. Combining ideas and 
properties from both, a two-stage CCA (CCA2) algorithm for non-stationary systems has 
been proposed.  
 
Preliminary simulation studies comparing CCA, ACCA, CCA2 and Johansen’s ML method 
suggest that: 
 

 The use of CCA2 does not seem justified when compared with the standard CCA. 
 
 The characteristics of the generating process affect the relative performance of the 
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different algorithms (ML, CCA, ACCA) for model estimation.  
 
Future research will focus on the exploration of the data features that can help us to make a 
decision for one or another identification procedure.  
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