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Abstract

In populations subject to evolutionary processes, the assortment of players with
different genes or strategies can have a large impact on players’ payoffs and on the
expected evolution of each strategy in the population. Here we consider assortment
generated by a process of partner choice known as selective assortment. Under selec-
tive assortment, players looking for a mate can observe the strategies of a sample of
potential mates or co-players, and select one of them to interact with. This selection
mechanism can generate positive assortment (if there is a preference for players
using the same strategy), or negative assortment. We study the impact of selective
assortment in the evolution and in the equilibria of a population, providing results
for different games under different evolutionary dynamics (including the replicator
dynamics).
JEL classification numbers: C72, C73.
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1 Introduction

The standard model for random encounters of agents in Evolutionary Game Theory
(Sandholm, 2010; Weibull, 1995) assumes uniform random matching in large (techni-
cally, infinite) well-mixed populations, meaning that any agent is equally likely to meet
any other agent. Thus, under uniform random matching, the probability of interacting
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with an agent who uses strategy i (an i-player) equals the fraction of i-players in the
population. Many scholars have pointed out that such situations are probably rare in
nature, and argued in favor of studying deviations from the well-mixed model.

A first natural extension of the well-mixed model is to let the probability that two
players interact depend on their individual strategies. For instance, if there is positive
assortment, individuals preferentially interact with individuals of the same type; on
the other hand, if there is negative assortment, individuals preferentially interact with
individuals of a different type. We consider processes in which the average assortment
of a type determines its expected payoff, and expected payoffs determine population
dynamics. An alternative and more detailed way of departing from the framework
of well-mixed populations is to assume that players are embedded on an underlying
network. In networks, the probability that a certain individual interacts with other
individuals depends on the network configuration (the distribution of strategies over
the locations of the network), and local assortment can present considerable fluctuations
with respect to average assortment.

Eshel and Cavalli-Sforza (1982) discuss two potential sources of assortment, focusing
on positive assortment. The first source is called structural assortment, and is associated
with situations in which players with different strategies happen to find themselves
in different mating environments. This could be due, for instance, to spatial effects:
descendants, who share common traits, are usually in close spatial proximity. Local
reproduction or local imitation, combined with local interactions, also tend to generate
positive assortment.

The second source of assortment is called selective assortment, and it assumes that, when
looking for a mate or partner, players can meet a (small) number k of potential mates,
observe their strategy (or some reliable and highly correlated proxy) and select one of
those potential mates.

Naturally, both sources of assortment (structural and selective) can take place simultane-
ously: players may actively select mates in different potential-mate environments.

A reference model for positive assortment is the so-called two-pool assortative matching
process with constant assortativity α (Bergstrom, 2003, 2013; Eshel & Cavalli-Sforza, 1982),
which Eshel and Cavalli-Sforza (1982) interpret as a model of structural assortment.
This model assumes that a player interacts:

• with probability α > 0, with a player who uses the same strategy, and

• with probability (1 − α), with a random player from the population.

Equivalently (in terms of expected payoffs), one can suppose that all players in the
population are matched in pairs, in a way such that a fraction α of the population is
matched assortatively to individuals of their same strategy, and a fraction (1 − α) is
matched uniformly at random.

Most models of assortment in the literature on population games (Alger & Weibull,
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2010, 2013; Grafen, 1979; Holdahl & Wu, 2023; Iyer & Killingback, 2020; Nax & Rigos,
2016; Newton, 2017) have focused on variations of the two-pool positive assortment
process with constant assortativity. As indicated before, this process can be understood
as a result of matching or allocating all players into pairs. Jensen and Rigos (2018)
provide a general framework for matching rules that allocate all individuals into groups
with different compositions (i.e., different frequencies for each strategy), and van Veelen
(2011) studies the replicator dynamics in two-strategy games with allocation into groups.
Wu (2016) studies two-strategy coordination games in which the index of assortativity
is chosen by majority voting.

In this paper we focus on selective assortment, which does not assume that all players
are matched in pairs. Specifically, we extend Eshel and Cavalli-Sforza’s (1982) model
of selective assortment to allow for more than two strategies and also for negative
assortment. Interestingly, to the best of our knowledge, there are no reference models
for negative assortment. Probably, one of the reasons lies in the difficulties of extending
matching processes with constant assortativity to negative assortment (Jensen & Rigos,
2018). In particular, in appendix A we show that extending the two-pool assortative
matching process with constant assortativity to model negative assortment can give rise
to several undesirable issues, both from a mathematical point of view (discontinuous
payoff functions) and in terms of obtaining realistic models.

For the two-strategy case, following a different but related approach, Taylor and Nowak
(2006) discuss replicator dynamics with non-uniform interaction rates. These non-
uniform interaction rates can also be interpreted in terms of assortment. Interestingly,
the phase portraits obtained under selective assortment that we present for the specific
case of two strategies and replicator dynamics show some parallels with the phase
portraits in Taylor and Nowak (2006). Friedman and Sinervo (2016) present a gen-
eral framework for assortative interactions based on matching (or encounter) matrices,
whose terms can also be interpreted as measures of the frequency with which i-players
receive payoffs from interactions with j-players. Hauert and Miȩkisz (2018) consider a
model in which players who interact together are also more likely to be competitors for
reproduction, which leads to deviations from well-mixed populations.

Finally, all phase portraits shown in this paper can be easily replicated with open-source
freely available software which performs exact computations of rest points and exact
linearization analyses (Izquierdo, Izquierdo, & Hauert, 2024).

2 Setting and notation

We consider a population of individuals who may interact with each other in pairs,
to play a symmetric two-player game. Each individual has a type or strategy i ∈ S =
{1, 2, ...,n}. An i-player who interacts with a j-player obtains a payoff Ui j.

Let xi be the proportion or fraction of type i in the population and let x = (xi)i∈S be the
population state: the vector describing the distribution of types in the population. Since
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xi ≥ 0 and
∑

i∈S xi = 1, the population state x lives in the simplex ∆n−1 = {x ∈ Rn
+ :∑

i∈S xi = 1}. The monomorphic states in which all players use the same strategy i are
represented by the unit vectors ei.

At a population state x, each type or strategy i is assumed to have an average or expected
payoff

πi(x) =
n∑

j=1

p j|i(x) Ui j (1)

where p j|i(x) is the conditional probability that an i-player interacts with a j-player
receiving payoff Ui j. Thus, in this setting, we allow the probabilities of interaction
p j|i(x) to depend on individual’s i type. In this way, we generalize from the standard
framework of well-mixed populations where p j|i(x) = x j for all i, j ∈ S. We refer to this
last case as neutral assortment.

The conditional probabilities p j|i(x), with
∑n

j=1 p j|i(x) = 1, define the assortment of interac-
tions and determine the expected payoff for each strategy type, at any population state x.
We assume that these probabilities are defined at every population state x ∈ ∆n−1.

Note that the expected payoff πi(x) for strategy i (1) is a convex combination of the game
payoffs {Ui j}, so πi(x) is a value in the range between the minimum and the maximum
payoffs for i, i.e., πi(x) ∈ [min j Ui j,max j Ui j].

2.1 Positive and negative assortments

In the literature, the terms assortment or assortative mating are often used to indicate
that individuals interact with their own type with more probability than under random
matching. Some authors (see e.g. Iyer and Killingback (2020)) distinguish between
positive and negative assortment, depending on whether the conditional interaction
probabilities pi|i are greater or lower than under random matching. In the following,
we use the term assortment to refer to the set of functions p j|i : ∆n−1

→ [0, 1] that
characterize the conditional interaction probabilities (for each strategy pair) at every
state. By comparison with the probabilities under random matching, we say that an
assortment is:

• Positive if pi|i(x) ≥ xi for every i ∈ S and every state, with strict inequality at least
at one state.

• Negative if pi|i(x) ≤ xi for every i ∈ S and every state, with strict inequality at least
at one state.

• Neutral if pi| j(x) = xi for every i, j ∈ S and every state.

When referring to an assortment at a specific state x, we say that an assortment at state
x is
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• positive if pi|i(x) > xi for every i ∈ S,

• negative if pi|i(x) < xi for every i ∈ S, and

• neutral if pi| j(x) = xi for every i, j ∈ S.

Note that the reference interaction probabilities (those corresponding to random or
neutral matching) depend on the state x. In particular, having large values for every
same-type interaction probability pi|i(x) at a population state does not guarantee that
there is positive assortment at that state. For instance, if at some state x, pi|i(x) = 0.9
for every i ∈ S, but there is a strategy j such that x j > 0.9, then there is no positive
assortment. Similarly, having low values for every same-type interaction probability at
a state does not guarantee negative assortment at that state. For instance, if at some
state x, pi|i(x) = 0.1 for every i ∈ S, but there is a strategy j such that x j < 0.1, then there
is no negative assortment.

2.2 Balanced and boundary-compatible assortments

In many cases it seems natural to assume that if at some population state x there are
no j-players (i.e., if x j = 0), then the conditional probability of meeting a j-player at
such a state p j|i(x) must be 0. An assortment that satisfies this condition is said to be
boundary-compatible. Specifically, an assortment is boundary-compatible if

x j = 0 =⇒ p j|i(x) = 0

for every state x ∈ ∆n−1, and every i, j ∈ S.

At a monomorphic state ei (where all players use strategy i), the conditional probabilities
of a boundary-compatible assortment satisfy pi| j(ei) = 1 for every j (i.e., if there are only
i-players, any player entering the population will meet an i-player), leading to payoffs
π j(ei) = U ji.

Another interesting property to take into account is balance. An assortment may (or may
not) imply that, on average, the number of payoff-relevant or accounted i- j interactions
is equal to the number of payoff-relevant j-i interactions. Specifically, we say that an
assortment is balanced if:

xi p j|i(x) = x j pi| j(x) for every i, j ∈ S and x ∈ ∆n−1.

For instance, uniform random matching generates the neutral assortment pi| j(x) = xi,
which is boundary-compatible and balanced: xi p j|i(x) = xi x j = x j pi| j(x). Complete
matching (which assumes that every player plays once with every other player) gener-
ates the same assortment.

The two-pool process with constant assortativity generates a balanced assortment, but
it is not boundary-compatible (α > 0 is a minimum value for the probability pi|i that an
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i-player meets another i-player, even at states where there are no i-players). Selective
assortment, on the other hand, is boundary-compatible, but it is not balanced.

If every time there is an interaction between two players, both players receive a payoff,
and all payoffs are treated equally, then the assortment is balanced. This is typically the
case if, during a time period, all players in a population are assumed to be matched or
grouped in pairs to play the game (whole-population matching). However, there are
some reference cases in which assortments are typically non-balanced, as it happens
with selective assortment. If players sometimes actively look for an interacting mate
and sometimes passively accept a request for interaction, and the relevant payoffs for
a player are those obtained when actively looking for an interaction, the associated
assortment does not need to be balanced. Similarly, if players of different types have
different expected number of interactions per period (e.g., heterogeneous structured
populations (Maciejewski, Fu, & Hauert, 2014)) and the relevant payoff is the average
payoff per interaction, the associated assortment will typically be non-balanced. In each
of these cases some payoffs are treated differently than others, either because of taking
averages over a different number of interactions, or because payoffs received by players
who do not initiate an interaction are disregarded.

2.3 Positive assortment vs positive index of assortativity

For balanced assortments with two types (1 and 2), Bergstrom (2003, 2013) defines the
index of assortativity at state x as the difference between the conditional probability of
interacting with a type (e.g., type 1) if the player is of that same type (type 1) minus that
conditional probability if the player is of the other type (type 2):

α(x) ≡ p1|1(x) − p1|2(x). (2)

The definition can be extended to non-balanced assortments. It follows from
∑

j p j|i = 1
that α(x) = p1|1(x)− p1|2(x) = p2|2(x)− p2|1(x), and also that α(x) = p1|1(x)+ p2|2(x)− 1. This
last identity leads to the following observation for games with two types:

Observation 2.1. Positive assortment at x implies positive index of assortativity at x. Negative
assortment at x implies negative index of assortativity at x.

For a two-type balanced assortment, it can be shown that pi|i(x) = xi + α(x)(1 − xi). This
implies that, in the special case of balanced assortments, at any interior state x there is an
equivalence between positive (negative) index of assortativity and positive (negative)
assortment, as defined in section 2.1.

However, in general, the converse of observation 2.1 is not true: a positive index of
assortativity at a state does not guarantee positive assortment at that state, with the
corresponding result also for negative assortment. Suppose for instance that at state
(x1, x2) = (0.5, 0.5) we have p1|1 = 0.7, p2|1 = 0.3, p1|2 = 0.6, p2|2 = 0.4. At this state we
have positive index of assortativity α = 0.7−0.6 = 0.4−0.3 = 0.1, but there is no positive
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assortment, because p2|2 = 0.4 < x2 = 0.5. In the general case (i.e., when allowing
for balanced and non-balanced assortments), having positive assortment at a state is a
stronger condition than just having positive index of assortativity at that state.

3 Selective assortment

In this section we extend the model of positive selective assortment defined by Es-
hel and Cavalli-Sforza (1982) for two types, to any number of types and to negative
assortment.

Under selective assortment, when players look for a mate they obtain a sample of
k ≥ 1 random players or potential mates to interact with. The player then chooses as
mate:

• Under positive assortment, one of the players who uses her same strategy, if there
are any in the sample.

• Under negative assortment, one of the players who uses a different strategy, if
there are any in the sample.

If there are no players in the sample with the desired strategies (no players with the
same strategy for positive assortment, or no players with a different strategy for negative
assortment), then a random mate from the sample is chosen.

For the purpose of the following analysis, the special case k = 1, which corresponds to
neutral assortment, is included as a reference case in the families of both positive and
negative assortment.

3.1 Positive Selective Assortment

In this section we derive the assortment probabilities pk+
j|i (x) for the model of positive

selective assortment with sample size k ≥ 1.

The probability that a sample of k players has no i-players is (1− xi)k, so the probability
that a sample has at least one i-player is 1 − (1 − xi)k. Considering that every player
with a strategy j , i is treated equally by an i-player who is looking for a mate, it can be
shown (see proof in appendix B) that the conditional probabilities pk+

j|i are:

pk+
j|i (x) =

1 − (1 − xi)k if j = i
(1 − xi)k−1x j if j , i

(3)

At monomorphic states we have πk+
j (ei) = U ji. This is so for every sample size k, i.e.,

payoffs at monomorphic states are not affected by the sample size.
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At interior states, we have limk→∞ π
k+
i (x) = Uii. This means that the payoff for every

strategy at interior states converges, as k → ∞, to the strategy’s same-type-interaction
payoff Uii.

3.2 Negative Selective Assortment

We now derive the assortment probabilities pk−
j|i (x) for the model of negative selective

assortment with sample size k ≥ 1.

The probability that all players in a sample of k players are i-players is xk
i . Considering

that every player with a strategy j , i is treated equally by an i-player who is looking
for a mate, it can be shown (see proof in appendix B) that the conditional probabilities
pk−

j|i are:

pk−
j|i (x) =


xk

i if j = i
(1 − xk

i )
x j

1−xi
if j , i and xi < 1

0 if j , i and xi = 1

(4)

At monomorphic states we have πk−
j (ei) = U ji. This is so for every sample size k, i.e.,

payoffs at monomorphic states are not affected by the sample size.

At interior states, as k → ∞, the probability of same type interactions pk−
i|i (x) tends to 0,

and pk−
j|i (x) →

x j

1−xi
(for j , i), i.e., the probability that an i-player (when calculating her

payoff) interacts with a j-player approaches the relative frequency of j-players among
not-i-players.

4 Selective assortment in games with two strategies

In this section we analyze the impact of (positive and negative) selective assortment in
2-player 2-strategy symmetric games (henceforth, 2x2 games). We name the strategies
C for Cooperate and D for Defect, and characterize the population state by the fraction
of C-players xc. Payoffs are UCC = R,UDD = P,UDC = T, and UCD = S (see table 1).

( C D
C R S
D T P

)
Table 1: Payoffmatrix for a symmetric game with strategies C and D.

Let us study the different cases, focusing on generic games (i.e., assuming that the four
payoffs are different). Without loss of generality, let us assume that coordinating on
playing C is more efficient than coordinating on playing D, i.e., R > P.
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4.1 Payoff functions

From (1) and (3), the payoff functions for positive selective assortment are

πk+
C (xc) = R − (1 − xc)k (R − S)

πk+
D (xc) = P + xk

c (T − P)
(5)

From (1) and (4), the payoff functions for negative selective assortment are

πk−
C (xc) = S + xk

c (R − S)

πk−
D (xc) = T − (1 − xc)k (T − P)

(6)

Figure 1 shows some illustrative examples of these functions for a Snowdrift game
(T > R > S > P).

Neutral assortment, k = 1

Positive assortment, k = 2 Positive assortment, k = 10

Negative assortment, k = 2 Negative assortment, k = 10

Figure 1: Payoffs for each strategy as a function of the fraction of cooperators in the Snowdrift game with
payoffs {P = 0,S = 1,R = 3,T = 4} under neutral assortment (k = 1), and under positive and negative

selective assortment with sample sizes k = 2 and k = 10. The unique interior ESS moves with k in opposite
directions depending on whether the assortment is positive or negative.

It can be seen in the formulas for the payoffs that, at every interior state:

• For positive assortment, as k grows, the payoff of each strategy i converges to its
same-type-payoff Uii (its main-diagonal payoff in the payoffmatrix):

πk+
C (xc)

k→∞
−→ R and πk+

D (xc)
k→∞
−→ P.
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• For negative assortment, as k grows, the payoff of each strategy i converges to its
different-type-payoff Ui j (its anti-diagonal payoff in the payoffmatrix):

πk−
C (xc)

k→∞
−→ S and πk−

D (xc)
k→∞
−→ T.

It can also be seen that the payoff functions in (5) and (6) (as functions of xc) are
monotonic, because of the monotonicity of xk

c and (1 − xc)k, with the differences (R − S)
and (T − P) determining whether the payoff functions are increasing or decreasing, and
also determining whether they are convex or concave. For instance, for the Snowdrift
game (R−S > 0,T−P > 0), πk+

C (xc) is increasing and concave, while πk+
D (xc) is increasing

and convex (see figure 1).

4.2 The replicator dynamics

Considering the previous properties of the payoff functions (monotonicity and convex-
ity or concavity), let us study the replicator dynamics

ẋi = xi

πi(x) −
∑

j

x j π j(x)

 (RD)

in every 2x2 generic game under selective assortment. Again, assume without loss
of generality that R > P. The phase portrait for the replicator dynamics (RD) does
not change if a constant is added to every payoff, or if all payoffs are multiplied by a
same positive constant (see (5) and (6)), so for this analysis, without loss of generality,
we can assume normalized payoffs R = 1 and P = 0. (The original payoffs would be
normalized by substrating P and dividing by R − P.) We then define the following four
regions:

• Region I: T > 1 and S < 0. Example: Prisoner’s Dilemma.

• Region II: T > 1 and S > 0. Example: Snowdrift.

• Region III: T < 1 and S < 0. Example: Stag Hunt.

• Region IV: T < 1 and S > 0. Example: Harmony.

Under neutral assortment, the dynamics in each region are as follows. In region I, D is
strictly dominant, so eD attracts all interior trajectories. In region II, there is a unique
interior evolutionarily stable rest point that attracts all interior trajectories. In region
III, there is bi-stability of eC and eD, with an internal unstable rest point separating their
basins of attraction. Finally, in region IV, C is strictly dominant, so eC attracts all interior
trajectories.

Under positive assortment, a new phase portrait appears in region I (Prisoner’s Dilemma)
for large enough sample size (see figure 3). This new phase portrait presents an addi-
tional attractor (next to eC, for large k) and an additional repellor (next to eD, for large
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Figure 2: Phase portraits for 2x2 symmetric games in the RD under neutral assortment. Red dots
represent evolutionarily stable states (attractors). White dots represent repellors.

k). Furthermore, both the level of cooperation and the size of the basin of attraction
of this new attractor (where cooperators and defectors coexist) increase as the sample
size k grows. Note, however, that positive selective assortment cannot stabilize full
cooperation in the Prisoner’s Dilemma, not even for very large k. In region II, for large
k, the interior attractor is close to eC. In region III, for large k, the interior repellor is
close to eD. In every case, for large k, the flow in most of the state space points towards
eC, which is the most efficient monomorphic state, leading to a stable state (either at eC
or close to it) in which either all or most of the population is cooperating.

Under negative assortment, in region I (Prisoner’s Dilemma) there is no significant
change with respect to neutral assortment (see figure 4). In region II, for large k, the
interior attractor is either close to eC (if S > T) or close to eD (if T > S). In region III,
for large k, the interior repellor is either close to eD (if S > T) or close to eC (if T > S).
Finally, in region IV, a new phase portrait appears for large enough sample size and
T > S (shaded triangle in figure 4). This phase portrait presents an additional attractor
(next to eD, for large k) and an additional repellor (next to eC, for large k). In every case,
for large k:

• If T > S, the flow in most of the state space points towards eD, leading to a stable
state (either at eD or close to it) in which either all or most of the population is
using strategy D.

• If T < S, the flow in most of the state space points towards eC, leading to a stable
state (either at eC or close to it) in which either all or most of the population is
using strategy C.
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Figure 3: Phase portraits for 2x2 symmetric games in the RD under positive selective assortment. The
symbol (↑ k) over an interior rest point, with an associated double arrow below, indicates that, for large

values of k, the interior rest point is close to the corresponding edge.

Figure 4: Phase portraits for 2x2 symmetric games in the RD under negative selective assortment. The
symbol (↑ k) over an interior rest point, with an associated double arrow below, indicates that, for large

values of k, the interior rest point is close to the corresponding edge.
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5 Selective assortment in games with any number of strategies

In this section we consider symmetric two-player games with any number of strategies.
We provide results about the equilibria and the attractors, under different evolutionary
dynamics, for positive and negative selective assortment.

We will use the concept of a symmetric Nash strategy profile (a profile being a pair
of strategies) from classical game theory, and the concept of Nash population state
(which is a distribution of strategies in the population) from evolutionary game theory.
For completeness, we formally define these concepts below, before indicating their
relationship under selective assortment.

Definition 5.1. A strategy profile (i, i) is a Nash profile if U ji ≤ Uii for every j , i. It is a strict
Nash profile if the condition holds with strict inequality.

In the context of population games, considering a set of payoff functions that provide
the payoffπi(x) obtained by each strategy at every state, we have the following standard
definition of Nash and strict Nash monomorphic states.

Definition 5.2. A monomorphic state ei is a Nash state if π j(ei) ≤ πi(ei) for every j , i. It is a
strict Nash state if the condition holds with strict inequality.

Observation 5.3. A monomorphic state ei is a (strict) Nash state of a game with selective
assortment if and only if strategy profile (i, i) is a (strict) Nash profile of the game.

With Lipschitz continuous payoff functions (which, given (3) and (4), is the case under
selective assortment), strict Nash states are asymptotically stable in the replicator dy-
namics (Hofbauer & Sigmund, 2003). We consequently have the following result.

Observation 5.4. If (i, i) is a strict Nash profile, then the monomorphic state ei is asymptotically
stable in the replicator dynamics under selective assortment (either positive or negative, and for
every sample size k).

Besides the replicator dynamics, observation 5.4 extends to every dynamics for which
strict Nash states are asymptotically stable, such as best response dynamics, payoff
monotonic imitation dynamics and, more generally, any myopic adjustment dynamics
(Hofbauer & Sigmund, 2003).

Observation 5.5. If (i, i) is not a Nash profile, then the monomorphic state ei is an unstable
rest point of the replicator dynamics under selective assortment (either positive or negative, and
for every sample size k).

Besides the replicator dynamics, observation 5.5 extends to every dynamics for which
non-Nash states are unstable, such as every payoff monotonic imitation dynamics.
Furthermore, for many dynamics, such as best response dynamics, only Nash states can
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be rest points (Sandholm, 2010), so if (i, i) is not Nash, then ei is not even a rest point
under such dynamics.

Our next result shows that, for positive assortment and large k, there is an attractor of the
replicator dynamics close to the most efficient monomorphic state, and most trajectories
converge to this attractor.

Proposition 5.6. Assume positive selective assortment. Suppose that there is a unique most-
efficient monomorphic state ei, i.e., Uii > max j,i U j j. Note that this is always the case in generic
games. Then:

• At any interior point x, for large enough sample size k, strategy i becomes strictly dominant,
i.e,

πk+
i (x) > πk+

j (x) for every j , i.

• Any relative neighborhood O of ei contains, for large enough k, an attractor of the replicator
dynamics. And any trajectory that begins at a state x with xi > 0 converges, for large
enough k, to O. (Note that ei may not be Nash, and, consequently, it may be unstable.)

Convergence to a (small) neighborhood of ei implies that most of the population will
adopt strategy i, but it does not imply convergence to a rest point.

Proposition 5.6 extends to every dynamics satisfyingπi(x) >
∑

j

x jπ j(x)

 =⇒ ẋi > 0,

such as aggregate monotonic imitation dynamics (Hofbauer & Sigmund, 2003).

Example 5.1. In the Prisoner’s Dilemma (see figure 5), the full-defection state eD is a strict
Nash state, so it is asymptotically stable in the replicator dynamics under every selective
assortment. The cooperative state eC is not Nash, so it is unstable in the replicator
dynamics under every selective assortment. However, the most efficient monomorphic
state is the cooperative state eC, so, for positive assortment and large enough k, there is
an attractor close to the cooperative state which attracts most trajectories (see figure 5
for k = 10).

Example 5.2. Consider the 1-2-3 coordination game (table 2) with positive selective
assortment (figure 6).


1 2 3

1 1 0 0
2 0 2 0
3 0 0 3


Table 2: Payoffmatrix for the 1-2-3 coordination game.

14



(i) Neutral assortment, k = 1 (ii) Positive assortment, k = 2 (iii) Positive assortment, k = 10

Figure 5: Payoffs for each strategy as a function of the fraction of cooperators in the Prisoner’s Dilemma
with payoffs {S = 0,P = 1,R = 3,T = 4} under neutral assortment (k = 1) and under positive selective
assortment with sample sizes k = 2 and k = 10. The arrows show the phase portrait for the replicator

dynamics.

The three monomorphic states are strict Nash states, so they are asymptotically sta-
ble in the replicator dynamics under (every) selective assortment. The most efficient
monomorphic state is e3. For positive assortment, as k grows, it can be seen that most
trajectories (all those whose initial value for x3 is greater than a threshold value that
decreases with k) converge to the most efficient state e3.

(i) Neutral assortment, k = 1 (ii) Positive assortment, k = 3 (iii) Positive assortment, k = 10

Figure 6: Replicator dynamics for positive selective assortments, for the 123-coordination game with
payoffmatrix shown in table 2.

Example 5.3. Consider the Traveler’s dilemma game (table 3), with positive selective
assortment (figure 7).


1 2 3

1 2 4 4
2 0 3 5
3 0 1 4


Table 3: Payoffmatrix for the traveler’s dilemma game with three strategies.
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Here, the inefficient e1 is strict Nash, so it is asymptotically stable, while e2 and e3 are not
Nash, so they are unstable, for every k. The least and most efficient monomorphic states
are respectively e1 and e3. Under neutral assortment, the least efficient state e1 attracts
all interior trajectories. For positive assortment, as k grows, it can be seen that most
trajectories (all whose initial value for x3 is greater than some threshold that decreases
towards 0 with k) converge to an attractor close to the most efficient monomorphic state
e3 (and that attractor gets closer to e3 as k grows).

(i) Neutral assortment, k = 1 (ii) Positive assortment, k = 3 (iii) Positive assortment, k = 10

Figure 7: Replicator dynamics for positive selective assortments, for the Traveler’s Dilemma game with
the payoffmatrix shown in table 3.

Our next result, for negative selective assortment and large k, provides conditions that
guarantee the existence of an attractor close to one of the monomorphic states of a
game. It may seem surprising that negative assortment (a preference to interact with
other types) leads most players to use the same strategy. However, note that, under
selective assortment with large sample size k, most interactions in the population take
place between players using different strategies even if most players are using the same
strategy.

Proposition 5.7. Assume negative selective assortment. If a monomorphic state ei satisfies
min j,i Ui j > max j,i U ji, then any relative neighborhood O of ei contains, for large enough k,
an attractor of the replicator dynamics.

If, additionally, min j,i Ui j ≥ max j,i,k, j U jk, then any trajectory that begins at a point x with
xi > 0 converges, for large enough k, to O. (Note that ei may not be Nash, and, consequently, it
may be unstable.)

Proposition 5.7 extends to any dynamics under which a strictly dominant strategy
grows while it is not the only strategy played in the population, i.e., for any dynamics
satisfying (

πi(x) > max
j,i
π j(x) and 0 < xi < 1

)
=⇒ ẋi > 0,

such as best response dynamics.
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Example 5.4. Consider the game with payoff matrix shown in table 4. Under neutral
assortment, strategy 1 is dominated by strategies 2 and 3. Strategy 3 is dominant, and
attracts all interior trajectories of the replicator dynamics (see figure 8).


1 2 3

1 0 3 3
2 1 3 3
3 1 3 5


Table 4: Payoffmatrix for the game in example 5.4.

For strategy 1, after excluding U11, the minimum row-payoff is greater than the maxi-
mum column-payoff (3 > 1). By proposition 5.7, for negative selective assortment and
large enough k, there is an attractor of the dynamics close to e1. Furthermore, given that
3 ≥ max j,1,k, j U jk = 3, we have that, for ϵ > 0 and large enough k, all trajectories with
an initial value of x1 in the range [ϵ, 1 − ϵ] approach this attractor. However, given that
e1 is not a Nash state, e1 itself is not an attractor.

(i) Neutral assortment, k = 1 (ii) Negative assortment, k = 3 (iii) Negative assortment, k = 10

Figure 8: Replicator dynamics for negative selective assortments, for the game in example 5.4.

6 Conclusions

In order to study the effects of positive assortment, the two-pool assortative matching pro-
cess (Bergstrom, 2003, 2013; Eshel & Cavalli-Sforza, 1982) can be considered a standard
reference model. In sharp contrast, there seems to be no standard reference models
to study the effects of negative assortment. Providing reference models for negative
assortment is not immediate, because many direct extensions of positive assortment
processes (such as extending the two-pool process) can be problematic or unrealistic
(see appendix A for details).

In this paper we have analyzed a model of selective assortment for two-player inter-
actions that extends Eshel and Cavalli-Sforza (1982)’s two-strategy positive assortment
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model to several strategies and, more importantly, to negative assortment. In this way,
our contribution fills in the lack of reference models for negative assortment.

Under neutral assortment, in the replicator dynamics with two strategies, the two
monomorphic states are rest points and, in generic games, there can be at most one
additional interior rest point, which is an attractor or a repellor. Selective assortment
(compared to neutral assortment) does not modify the stability of the two monomorphic
states, but it can significantly alter the dynamics in the interior of the state space. For
instance, in the Prisoner’s Dilemma, if positive selective assortment is sufficiently strong,
a new interior attractor appears, where cooperators and defectors coexist. Furthermore,
both the level of cooperation and the size of the basin of attraction of this interior
attractor increase with the strength of positive assortment. In other games, negative
selective assortment can generate a similar effect.

As for results for any number of strategies, we have shown that, under many evolution-
ary dynamics, positive selective assortment (for sufficiently large sample size k and most
initial conditions) leads to most of the population playing the most efficient strategy, i.e.
the strategy with the greatest same-type payoff Uii. For negative assortment, we have
also identified strategies that, under many evolutionary dynamics, are adopted by the
majority of the population.

A Alternative models for negative assortment

Somewhat surprisingly, defining the negative-assortment equivalent of a process that
generates positive assortment is not generally straightforward or even possible. In this
appendix, we present potential extensions of the two-pool positive assortment model (Eshel
& Cavalli-Sforza, 1982) to include negative assortment, and we discuss the issues that
each of them presents. We start by presenting three possible characterizations of the
two-pool positive assortment model. Each of these characterizations leads to a different
model of negative assortment, which we formally define and discuss.

A.1 Three characterizations of the two-pool positive assortment model

The following characterizations can be used to define the two-pool positive assortment
model:

[C-I] Players compute their payoffs by interacting:

• with probability α > 0, with a player using their same strategy, and

• with probability (1 − α), with a random player.

[C-II] The assortment is balanced and all assortativity factors αi j(x) are equal to a positive
constant α, i.e. pi|i(x) − pi| j(x) = α for every i and j , i.

[C-III] At interior states, a representative fraction α of the population is matched in
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pairs in a way such that the number of same-strategy pairs is maximized, and the
remaining fraction (1 − α) of the population is randomly matched.

We now summarize the main properties of the two-pool positive assortment model (regard-
less of how it is characterized). Probabilities p j|i(x) in this assortment are:

p j|i(x) = α δi j + (1 − α) x j

where δi j is the Kronecker delta (δii = 1, and δi j = 0 if i , j).

The payoffs that result from this assortment are linear in x and are equivalent to the pay-
offs obtained under uniform random matching using the modified game payoffs:

Ũi j = αUii + (1 − α) Ui j

And finally, this assortment is balanced and positive, but not boundary compatible since
pi|i(x) ≥ α at every state. This implies that even if there are no i-players in a population
(xi = 0), a potential invader using strategy i is assumed to be able to interact with another
i-player with probability at least α (see Bergstrom (2013) for an alternative model). This
is probably the main drawback of this model of positive assortment.

The following subsections present and discuss potential ways to model negative assort-
ment, taking each of the three characterizations of the two-pool positive assortment model
as a starting point.

A.2 Extension from [C-I]. Proportional negative assortment

A natural way to model negative assortment in the spirit of characterization [C-I] would
be the following:

Extension from [C-I]. Players compute their payoffs by interacting:

• with probability α > 0, with a player using a different strategy, and

• with probability (1 − α), with a random player.

In contrast with the case of positive assortment, here we must also specify the probability
of selecting each of the different strategies. A natural way of doing this is proportional
to their frequencies. In that case, the probabilities p j|i(x) are:

p j|i(x) = α
x j

1 − xi
(1 − δi j) + (1 − α) x j

Probabilities p j|i(x) would still need to be defined at monomorphic states where xi = 1,
but the main issue with this model is that, in generic games with more than two
strategies, payoffs are necessarily discontinuous at monomorphic states for any α > 0.
In other words, payoffs at monomorphic states cannot be defined in a continuous way.
This is so because limϵ→0 π1(1 − ϵ, ϵ, 0, . . . , 0) = αU12 + (1 − α) U11 and limϵ→0 π1(1 −
ϵ, 0, ϵ, 0, . . . , 0) = αU13 + (1 − α) U11.
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A.3 Extensions from [C-II]. Assortment with constant negative assortativity

A natural way to model negative assortment in the spirit of characterization [C-II] would
be the following:

Extension from [C-II]. The assortment is balanced and all assortativity factors αi j(x) are
equal to a negative constant −α, i.e. pi|i(x) − pi| j(x) = −α for every i and j , i.

It turns out that there are no balanced assortments with negative constant index of
assortativity or, more generally, with negative constant assortativity factors. Jensen and
Rigos (2018) prove this fact for the two-strategy case, but the statement also applies
to more than two strategies. To see this, consider a state x̂ with x̂i = 0 and x̂ j > 0.
The balancing condition implies pi| j(x̂) = 0, so the corresponding assortativity factor
is αi j(x̂) = pi|i(x̂) − pi| j(x̂) = pi|i(x̂) ≥ 0. Thus, the assortativity factors of a balanced
assortment cannot be a negative constant.

Having seen that a balanced assortment with constant negative assortativity cannot
exist, now we explore whether a non-balanced assortment with constant negative as-
sortativity may exist.1 The only condition we impose is:

Second extension from [C-II]. The assortment is such that all assortativity factors αi j(x)
are equal to a negative constant −α, i.e. pi|i(x) − pi| j(x) = −α for every i and j , i.

Note that, for j , i, this extension implies pi| j(x) = α + pi|i(x) > 0. As a consequence,
such assortments may not be very realistic because they imply that, in a population
with no i-players, any not-i-player can interact with an i-player with strictly positive
probability.

A.4 Extension from [C-III]. Matching with maximum number of different-strategy
pairs

A natural way to model negative assortment in the spirit of characterization [C-III]
would be the following:

Extension from [C-III]. At interior states, a representative fraction α of the population is
matched in pairs in a way such that the number of different-strategy pairs is maximized,
and the remaining fraction (1 − α) of the population is randomly matched.

The two-strategy case is not problematic. The payoffs obtained when maximizing the
number of different-strategy pairs are:

(π1(x1), π2(x1)) =


(

(x1−x2)U11+x2U12
x1

,U21

)
if x1 ≥ 0.5(

U12,
(x2−x1)U22+x1U21

x2

)
if x1 < 0.5

1For the two-strategy case, Friedman and Sinervo (2016) discuss some balanced assortments with
(non-constant) negative assortativity.
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For more than three strategies, problems start to appear. A first issue to be addressed is
that, at some population states, there are different matchings in pairs that maximize the
number of different-strategy pairs, and these different matching mechanisms can lead
to different payoffs (for instance, any matching in pairs of four players who use four
different strategies maximizes the number of different-strategy pairs). In any case, for
more than two strategies, and considering generic games, this assortment necessarily
leads to discontinuous payoff functions, as our next proposition shows.

Proposition A.1. In populations with more than two strategies, and considering generic games,
any matching mechanism that maximizes the number of different-strategy pairs leads to discon-
tinuous payoff functions.

Proof. Any matching that maximizes the number of different-strategy pairs satisfies:

• p3|1 = 1 at states xϵ ≡ (ϵ, 1
2 − ϵ,

1
2 , 0, ..., 0), for ϵ ≤ 1

2 . This implies π1(xϵ) = U13.

• p2|1 = 1 at states xδ ≡ (δ, 1
2 ,

1
2 − δ, 0, ..., 0), for δ ≤ 1

2 . This implies π1(xδ) = U12.

Let x0
≡ (0, 1

2 ,
1
2 , 0, ..., 0). We have limϵ→0 xϵ = x0 and limδ→0 xδ = x0, but limϵ→0 π1(xϵ) =

U13 and limδ→0 π1(xδ) = U12 , U13 (because the game is assumed to be generic), so π1(x)
cannot be continuous at x0. □

B Proofs

Proof of equation (3). We know that pk+
i|i (x) = 1− (1− xi)k and that the process is such that,

at state x, every player with a strategy that is not i has the same probability of being
chosen by an i-player. Consequently, pk+

j|i (x) = a(x) x j for some value a(x), so

∑
j,i

pk+
j|i (x) =

∑
j,i

a(x)x j = a(x)
∑
j,i

x j = a(x)(1 − xi) (7)

From
∑

j pk+
j|i (x) = 1 we also have∑

j,i

pk+
j|i (x) = 1 − pk+

i|i (x) = (1 − xi)k (8)

Combining (7) and (8) we find
∑

j,i pk+
j|i (x) = (1 − xi)k = a(x)(1 − xi) leading to a(x) =

(1 − xi)k−1. Consequently, pk+
j|i = (1 − xi)k−1x j for j , i.

□

Proof of equation (4). We know that pi|i = xk
i and that the process is such that, at state x,

every player with a strategy that is not i has the same probability of being chosen by an
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i-player. Consequently, pk−
j|i = a(x) x j for some value a(x), and∑

j,i

pk−
j|i (x) =

∑
j,i

a(x)x j = a(x)
∑
j,i

x j = a(x)(1 − xi) (9)

From
∑

j pk−
j|i (x) = 1, we also have∑

j,i

pk−
j|i (x) = 1 − pk−

i|i (x) = 1 − xk
i (10)

Combining (9) and (10) we find 1 − xk
i = a(x)(1 − xi), leading to a(x) =

1−xk
i

1−xi
for xi , 1.

Therefore, pk−
j|i (x) =

1−xk
i

1−xi
x j for j , i and xi , 1. For xi = 1 we have pk−

i|i (ei) = 1 and,

consequently, pk−
j|i (ei) = 0 for j , i. □

Proof of observation 5.3. πk+
j (ei) = πk−

j (ei) = U ji for every i, j ∈ S and for every k, from
which the result follows. □

Proof of proposition 5.6. From (1) and (3) we have

πi(x) = [1 − (1 − xi)k] Uii +
∑
j,i

(1 − xi)k−1 x j Ui j.

It follows that, at any interior point x, limk→∞ πi(x) = Uii, and, if ei is the most-efficient
monomorphic state and j , i, limk→∞ π j(x) = U j j < Uii, proving the first part of
proposition 5.6.

For the second part, let π̄(x) =
∑

j x jπ j(x) be the average payoff at state x, let D1 ≡ Uii =
max j U j j and let D2 ≡ max j,i U j j < D1. We will prove that, for every x with xi > 0,

lim
k→∞
π̄(x) ≤ xi D1 + (1 − xi) D2. (11)

Then, for 0 < xi < 1 (given that D2 < D1),

lim
k→∞
π̄(x) ≤ xi D1 + (1 − xi) D2 < D1 = lim

k→∞
πi(x),

from which the result follows (for ϵ > 0, large enough k and xi ∈ [ϵ, 1 − ϵ], we have
πi(x) > π̄(x), which implies ẋi > 0 for xi ∈ [ϵ, 1 − ϵ]).

It only remains to show (11). In the following bound, we use the value M ≡ max j,i,k, j U jk.

π̄(x) = xi πi(x) +
∑
j,i

x j π j(x) ≤ xi πi(x) +
∑
j,i

x j [1 − (1 − x j)k] D2 +
∑
j,i

x j (1 − x j)k M =

= xi πi(x) + (1 − xi) D2 +
∑
j,i

x j(1 − x j)k (M −D2) k→∞
−→ xi D1 + (1 − xi) D2.

□

22



Proof of proposition 5.7. From (1) and (4) we have that, for xi < 1,

πi(x) = xk
i Uii + (1 − xk

i )
∑
j,i

x j

1 − xi
Ui j.

Let i be the strategy satisfying the condition min j,i Ui j > max j,i U ji. We use the
auxiliary variables B1 ≡ min j,i Ui j, B2 ≡ max j,i U ji (so, by hypothesis, B1 > B2) and
M ≡ max j,i,k, j U jk. At any point x with xi < 1 we have

lim
k→∞
πi(x) ≥ B1

At any point x with xi > 0, we have that, for j , i,

lim
k→∞
π j(x) ≤

xi U ji + (1 − xi − x j) M
1 − x j

≤
xi B2 + (1 − xi − x j) M

1 − x j
(12)

The upper bound in (12) is a convex combination of B2 and M. If M ≤ B1 (and considering
that B2 < B1), then for every x with 0 < xi < 1 we have limk→∞ πi(x) > limk→∞ π j(x).
This implies that, for large enough k, strategy i is strictly dominant for xi ∈ [ϵ, 1 − ϵ]
(fixing first ϵ > 0, and then taking a large enough k), proving the result (for M ≤ B1).

If M > B1, let γ > 0 be a positive constant. We have from (12) that, for xi > γ,

lim
k→∞
π j(x) ≤ B2 +

(
1 −

xi

1 − x j

)
(M − B2) ≤ B2 + (1 − γ)(M − B2) (13)

Solving for γ0 in
B2 + (1 − γ0)(M − B2) = B1

we find γ0 =
M−B1
M−B2

< 1, so for xi ∈
(

M−B1
M−B2

, 1
)
, we have limk→∞ πi(x) > limk→∞ π j(x). We

consequently have compact regions
{
x : xi ∈

[
M−B1
M−B2

+ ϵ, 1 − ϵ
]}

, for small enough ϵ > 0,
in which strategy i is strictly dominant for large enough k, proving the result. □
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